]> err.no Git - linux-2.6/blob - arch/sparc64/kernel/kprobes.c
[PATCH] Move kprobe [dis]arming into arch specific code
[linux-2.6] / arch / sparc64 / kernel / kprobes.c
1 /* arch/sparc64/kernel/kprobes.c
2  *
3  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/config.h>
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <asm/kdebug.h>
10 #include <asm/signal.h>
11
12 /* We do not have hardware single-stepping on sparc64.
13  * So we implement software single-stepping with breakpoint
14  * traps.  The top-level scheme is similar to that used
15  * in the x86 kprobes implementation.
16  *
17  * In the kprobe->ainsn.insn[] array we store the original
18  * instruction at index zero and a break instruction at
19  * index one.
20  *
21  * When we hit a kprobe we:
22  * - Run the pre-handler
23  * - Remember "regs->tnpc" and interrupt level stored in
24  *   "regs->tstate" so we can restore them later
25  * - Disable PIL interrupts
26  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
27  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
28  * - Mark that we are actively in a kprobe
29  *
30  * At this point we wait for the second breakpoint at
31  * kprobe->ainsn.insn[1] to hit.  When it does we:
32  * - Run the post-handler
33  * - Set regs->tpc to "remembered" regs->tnpc stored above,
34  *   restore the PIL interrupt level in "regs->tstate" as well
35  * - Make any adjustments necessary to regs->tnpc in order
36  *   to handle relative branches correctly.  See below.
37  * - Mark that we are no longer actively in a kprobe.
38  */
39
40 int arch_prepare_kprobe(struct kprobe *p)
41 {
42         return 0;
43 }
44
45 void arch_copy_kprobe(struct kprobe *p)
46 {
47         p->ainsn.insn[0] = *p->addr;
48         p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
49         p->opcode = *p->addr;
50 }
51
52 void arch_arm_kprobe(struct kprobe *p)
53 {
54         *p->addr = BREAKPOINT_INSTRUCTION;
55         flushi(p->addr);
56 }
57
58 void arch_disarm_kprobe(struct kprobe *p)
59 {
60         *p->addr = p->opcode;
61         flushi(p->addr);
62 }
63
64 void arch_remove_kprobe(struct kprobe *p)
65 {
66 }
67
68 /* kprobe_status settings */
69 #define KPROBE_HIT_ACTIVE       0x00000001
70 #define KPROBE_HIT_SS           0x00000002
71
72 static struct kprobe *current_kprobe;
73 static unsigned long current_kprobe_orig_tnpc;
74 static unsigned long current_kprobe_orig_tstate_pil;
75 static unsigned int kprobe_status;
76
77 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
78 {
79         current_kprobe_orig_tnpc = regs->tnpc;
80         current_kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
81         regs->tstate |= TSTATE_PIL;
82
83         /*single step inline, if it a breakpoint instruction*/
84         if (p->opcode == BREAKPOINT_INSTRUCTION) {
85                 regs->tpc = (unsigned long) p->addr;
86                 regs->tnpc = current_kprobe_orig_tnpc;
87         } else {
88                 regs->tpc = (unsigned long) &p->ainsn.insn[0];
89                 regs->tnpc = (unsigned long) &p->ainsn.insn[1];
90         }
91 }
92
93 static int kprobe_handler(struct pt_regs *regs)
94 {
95         struct kprobe *p;
96         void *addr = (void *) regs->tpc;
97         int ret = 0;
98
99         preempt_disable();
100
101         if (kprobe_running()) {
102                 /* We *are* holding lock here, so this is safe.
103                  * Disarm the probe we just hit, and ignore it.
104                  */
105                 p = get_kprobe(addr);
106                 if (p) {
107                         if (kprobe_status == KPROBE_HIT_SS) {
108                                 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
109                                         current_kprobe_orig_tstate_pil);
110                                 unlock_kprobes();
111                                 goto no_kprobe;
112                         }
113                         arch_disarm_kprobe(p);
114                         regs->tpc = (unsigned long) p->addr;
115                         regs->tnpc = current_kprobe_orig_tnpc;
116                         regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
117                                         current_kprobe_orig_tstate_pil);
118                         ret = 1;
119                 } else {
120                         p = current_kprobe;
121                         if (p->break_handler && p->break_handler(p, regs))
122                                 goto ss_probe;
123                 }
124                 /* If it's not ours, can't be delete race, (we hold lock). */
125                 goto no_kprobe;
126         }
127
128         lock_kprobes();
129         p = get_kprobe(addr);
130         if (!p) {
131                 unlock_kprobes();
132                 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
133                         /*
134                          * The breakpoint instruction was removed right
135                          * after we hit it.  Another cpu has removed
136                          * either a probepoint or a debugger breakpoint
137                          * at this address.  In either case, no further
138                          * handling of this interrupt is appropriate.
139                          */
140                         ret = 1;
141                 }
142                 /* Not one of ours: let kernel handle it */
143                 goto no_kprobe;
144         }
145
146         kprobe_status = KPROBE_HIT_ACTIVE;
147         current_kprobe = p;
148         if (p->pre_handler && p->pre_handler(p, regs))
149                 return 1;
150
151 ss_probe:
152         prepare_singlestep(p, regs);
153         kprobe_status = KPROBE_HIT_SS;
154         return 1;
155
156 no_kprobe:
157         preempt_enable_no_resched();
158         return ret;
159 }
160
161 /* If INSN is a relative control transfer instruction,
162  * return the corrected branch destination value.
163  *
164  * The original INSN location was REAL_PC, it actually
165  * executed at PC and produced destination address NPC.
166  */
167 static unsigned long relbranch_fixup(u32 insn, unsigned long real_pc,
168                                      unsigned long pc, unsigned long npc)
169 {
170         /* Branch not taken, no mods necessary.  */
171         if (npc == pc + 0x4UL)
172                 return real_pc + 0x4UL;
173
174         /* The three cases are call, branch w/prediction,
175          * and traditional branch.
176          */
177         if ((insn & 0xc0000000) == 0x40000000 ||
178             (insn & 0xc1c00000) == 0x00400000 ||
179             (insn & 0xc1c00000) == 0x00800000) {
180                 /* The instruction did all the work for us
181                  * already, just apply the offset to the correct
182                  * instruction location.
183                  */
184                 return (real_pc + (npc - pc));
185         }
186
187         return real_pc + 0x4UL;
188 }
189
190 /* If INSN is an instruction which writes it's PC location
191  * into a destination register, fix that up.
192  */
193 static void retpc_fixup(struct pt_regs *regs, u32 insn, unsigned long real_pc)
194 {
195         unsigned long *slot = NULL;
196
197         /* Simplest cast is call, which always uses %o7 */
198         if ((insn & 0xc0000000) == 0x40000000) {
199                 slot = &regs->u_regs[UREG_I7];
200         }
201
202         /* Jmpl encodes the register inside of the opcode */
203         if ((insn & 0xc1f80000) == 0x81c00000) {
204                 unsigned long rd = ((insn >> 25) & 0x1f);
205
206                 if (rd <= 15) {
207                         slot = &regs->u_regs[rd];
208                 } else {
209                         /* Hard case, it goes onto the stack. */
210                         flushw_all();
211
212                         rd -= 16;
213                         slot = (unsigned long *)
214                                 (regs->u_regs[UREG_FP] + STACK_BIAS);
215                         slot += rd;
216                 }
217         }
218         if (slot != NULL)
219                 *slot = real_pc;
220 }
221
222 /*
223  * Called after single-stepping.  p->addr is the address of the
224  * instruction whose first byte has been replaced by the breakpoint
225  * instruction.  To avoid the SMP problems that can occur when we
226  * temporarily put back the original opcode to single-step, we
227  * single-stepped a copy of the instruction.  The address of this
228  * copy is p->ainsn.insn.
229  *
230  * This function prepares to return from the post-single-step
231  * breakpoint trap.
232  */
233 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
234 {
235         u32 insn = p->ainsn.insn[0];
236
237         regs->tpc = current_kprobe_orig_tnpc;
238         regs->tnpc = relbranch_fixup(insn,
239                                      (unsigned long) p->addr,
240                                      (unsigned long) &p->ainsn.insn[0],
241                                      regs->tnpc);
242         retpc_fixup(regs, insn, (unsigned long) p->addr);
243
244         regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
245                         current_kprobe_orig_tstate_pil);
246 }
247
248 static inline int post_kprobe_handler(struct pt_regs *regs)
249 {
250         if (!kprobe_running())
251                 return 0;
252
253         if (current_kprobe->post_handler)
254                 current_kprobe->post_handler(current_kprobe, regs, 0);
255
256         resume_execution(current_kprobe, regs);
257
258         unlock_kprobes();
259         preempt_enable_no_resched();
260
261         return 1;
262 }
263
264 /* Interrupts disabled, kprobe_lock held. */
265 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
266 {
267         if (current_kprobe->fault_handler
268             && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
269                 return 1;
270
271         if (kprobe_status & KPROBE_HIT_SS) {
272                 resume_execution(current_kprobe, regs);
273
274                 unlock_kprobes();
275                 preempt_enable_no_resched();
276         }
277         return 0;
278 }
279
280 /*
281  * Wrapper routine to for handling exceptions.
282  */
283 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
284                              void *data)
285 {
286         struct die_args *args = (struct die_args *)data;
287         switch (val) {
288         case DIE_DEBUG:
289                 if (kprobe_handler(args->regs))
290                         return NOTIFY_STOP;
291                 break;
292         case DIE_DEBUG_2:
293                 if (post_kprobe_handler(args->regs))
294                         return NOTIFY_STOP;
295                 break;
296         case DIE_GPF:
297                 if (kprobe_running() &&
298                     kprobe_fault_handler(args->regs, args->trapnr))
299                         return NOTIFY_STOP;
300                 break;
301         case DIE_PAGE_FAULT:
302                 if (kprobe_running() &&
303                     kprobe_fault_handler(args->regs, args->trapnr))
304                         return NOTIFY_STOP;
305                 break;
306         default:
307                 break;
308         }
309         return NOTIFY_DONE;
310 }
311
312 asmlinkage void kprobe_trap(unsigned long trap_level, struct pt_regs *regs)
313 {
314         BUG_ON(trap_level != 0x170 && trap_level != 0x171);
315
316         if (user_mode(regs)) {
317                 local_irq_enable();
318                 bad_trap(regs, trap_level);
319                 return;
320         }
321
322         /* trap_level == 0x170 --> ta 0x70
323          * trap_level == 0x171 --> ta 0x71
324          */
325         if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
326                        (trap_level == 0x170) ? "debug" : "debug_2",
327                        regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
328                 bad_trap(regs, trap_level);
329 }
330
331 /* Jprobes support.  */
332 static struct pt_regs jprobe_saved_regs;
333 static struct pt_regs *jprobe_saved_regs_location;
334 static struct sparc_stackf jprobe_saved_stack;
335
336 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
337 {
338         struct jprobe *jp = container_of(p, struct jprobe, kp);
339
340         jprobe_saved_regs_location = regs;
341         memcpy(&jprobe_saved_regs, regs, sizeof(*regs));
342
343         /* Save a whole stack frame, this gets arguments
344          * pushed onto the stack after using up all the
345          * arg registers.
346          */
347         memcpy(&jprobe_saved_stack,
348                (char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
349                sizeof(jprobe_saved_stack));
350
351         regs->tpc  = (unsigned long) jp->entry;
352         regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
353         regs->tstate |= TSTATE_PIL;
354
355         return 1;
356 }
357
358 void jprobe_return(void)
359 {
360         preempt_enable_no_resched();
361         __asm__ __volatile__(
362                 ".globl jprobe_return_trap_instruction\n"
363 "jprobe_return_trap_instruction:\n\t"
364                 "ta 0x70");
365 }
366
367 extern void jprobe_return_trap_instruction(void);
368
369 extern void __show_regs(struct pt_regs * regs);
370
371 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
372 {
373         u32 *addr = (u32 *) regs->tpc;
374
375         if (addr == (u32 *) jprobe_return_trap_instruction) {
376                 if (jprobe_saved_regs_location != regs) {
377                         printk("JPROBE: Current regs (%p) does not match "
378                                "saved regs (%p).\n",
379                                regs, jprobe_saved_regs_location);
380                         printk("JPROBE: Saved registers\n");
381                         __show_regs(jprobe_saved_regs_location);
382                         printk("JPROBE: Current registers\n");
383                         __show_regs(regs);
384                         BUG();
385                 }
386                 /* Restore old register state.  Do pt_regs
387                  * first so that UREG_FP is the original one for
388                  * the stack frame restore.
389                  */
390                 memcpy(regs, &jprobe_saved_regs, sizeof(*regs));
391
392                 memcpy((char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
393                        &jprobe_saved_stack,
394                        sizeof(jprobe_saved_stack));
395
396                 return 1;
397         }
398         return 0;
399 }