]> err.no Git - linux-2.6/blob - arch/sh/kernel/setup.c
sh: Create an sh debugfs root.
[linux-2.6] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30 #include <asm/page.h>
31 #include <asm/elf.h>
32 #include <asm/sections.h>
33 #include <asm/irq.h>
34 #include <asm/setup.h>
35 #include <asm/clock.h>
36 #include <asm/mmu_context.h>
37
38 /*
39  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
40  * This value will be used at the very early stage of serial setup.
41  * The bigger value means no problem.
42  */
43 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
44         [0] = {
45                 .type                   = CPU_SH_NONE,
46                 .loops_per_jiffy        = 10000000,
47         },
48 };
49 EXPORT_SYMBOL(cpu_data);
50
51 /*
52  * The machine vector. First entry in .machvec.init, or clobbered by
53  * sh_mv= on the command line, prior to .machvec.init teardown.
54  */
55 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
56
57 #ifdef CONFIG_VT
58 struct screen_info screen_info;
59 #endif
60
61 extern int root_mountflags;
62
63 #define RAMDISK_IMAGE_START_MASK        0x07FF
64 #define RAMDISK_PROMPT_FLAG             0x8000
65 #define RAMDISK_LOAD_FLAG               0x4000
66
67 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
68
69 static struct resource code_resource = {
70         .name = "Kernel code",
71         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
72 };
73
74 static struct resource data_resource = {
75         .name = "Kernel data",
76         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
77 };
78
79 unsigned long memory_start;
80 EXPORT_SYMBOL(memory_start);
81 unsigned long memory_end = 0;
82 EXPORT_SYMBOL(memory_end);
83
84 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
85
86 static int __init early_parse_mem(char *p)
87 {
88         unsigned long size;
89
90         memory_start = (unsigned long)__va(__MEMORY_START);
91         size = memparse(p, &p);
92
93         if (size > __MEMORY_SIZE) {
94                 static char msg[] __initdata = KERN_ERR
95                         "Using mem= to increase the size of kernel memory "
96                         "is not allowed.\n"
97                         "  Recompile the kernel with the correct value for "
98                         "CONFIG_MEMORY_SIZE.\n";
99                 printk(msg);
100                 return 0;
101         }
102
103         memory_end = memory_start + size;
104
105         return 0;
106 }
107 early_param("mem", early_parse_mem);
108
109 /*
110  * Register fully available low RAM pages with the bootmem allocator.
111  */
112 static void __init register_bootmem_low_pages(void)
113 {
114         unsigned long curr_pfn, last_pfn, pages;
115
116         /*
117          * We are rounding up the start address of usable memory:
118          */
119         curr_pfn = PFN_UP(__MEMORY_START);
120
121         /*
122          * ... and at the end of the usable range downwards:
123          */
124         last_pfn = PFN_DOWN(__pa(memory_end));
125
126         if (last_pfn > max_low_pfn)
127                 last_pfn = max_low_pfn;
128
129         pages = last_pfn - curr_pfn;
130         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
131 }
132
133 #ifdef CONFIG_KEXEC
134 static void __init reserve_crashkernel(void)
135 {
136         unsigned long long free_mem;
137         unsigned long long crash_size, crash_base;
138         int ret;
139
140         free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
141
142         ret = parse_crashkernel(boot_command_line, free_mem,
143                         &crash_size, &crash_base);
144         if (ret == 0 && crash_size) {
145                 if (crash_base <= 0) {
146                         printk(KERN_INFO "crashkernel reservation failed - "
147                                         "you have to specify a base address\n");
148                         return;
149                 }
150
151                 if (reserve_bootmem(crash_base, crash_size,
152                                         BOOTMEM_EXCLUSIVE) < 0) {
153                         printk(KERN_INFO "crashkernel reservation failed - "
154                                         "memory is in use\n");
155                         return;
156                 }
157
158                 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
159                                 "for crashkernel (System RAM: %ldMB)\n",
160                                 (unsigned long)(crash_size >> 20),
161                                 (unsigned long)(crash_base >> 20),
162                                 (unsigned long)(free_mem >> 20));
163                 crashk_res.start = crash_base;
164                 crashk_res.end   = crash_base + crash_size - 1;
165         }
166 }
167 #else
168 static inline void __init reserve_crashkernel(void)
169 {}
170 #endif
171
172 void __init setup_bootmem_allocator(unsigned long free_pfn)
173 {
174         unsigned long bootmap_size;
175
176         /*
177          * Find a proper area for the bootmem bitmap. After this
178          * bootstrap step all allocations (until the page allocator
179          * is intact) must be done via bootmem_alloc().
180          */
181         bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
182                                          min_low_pfn, max_low_pfn);
183
184         add_active_range(0, min_low_pfn, max_low_pfn);
185         register_bootmem_low_pages();
186
187         node_set_online(0);
188
189         /*
190          * Reserve the kernel text and
191          * Reserve the bootmem bitmap. We do this in two steps (first step
192          * was init_bootmem()), because this catches the (definitely buggy)
193          * case of us accidentally initializing the bootmem allocator with
194          * an invalid RAM area.
195          */
196         reserve_bootmem(__MEMORY_START+PAGE_SIZE,
197                 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
198                 BOOTMEM_DEFAULT);
199
200         /*
201          * reserve physical page 0 - it's a special BIOS page on many boxes,
202          * enabling clean reboots, SMP operation, laptop functions.
203          */
204         reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
205
206         sparse_memory_present_with_active_regions(0);
207
208 #ifdef CONFIG_BLK_DEV_INITRD
209         ROOT_DEV = Root_RAM0;
210
211         if (LOADER_TYPE && INITRD_START) {
212                 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
213                         reserve_bootmem(INITRD_START + __MEMORY_START,
214                                         INITRD_SIZE, BOOTMEM_DEFAULT);
215                         initrd_start = INITRD_START + PAGE_OFFSET +
216                                         __MEMORY_START;
217                         initrd_end = initrd_start + INITRD_SIZE;
218                 } else {
219                         printk("initrd extends beyond end of memory "
220                             "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
221                                     INITRD_START + INITRD_SIZE,
222                                     max_low_pfn << PAGE_SHIFT);
223                         initrd_start = 0;
224                 }
225         }
226 #endif
227
228         reserve_crashkernel();
229 }
230
231 #ifndef CONFIG_NEED_MULTIPLE_NODES
232 static void __init setup_memory(void)
233 {
234         unsigned long start_pfn;
235
236         /*
237          * Partially used pages are not usable - thus
238          * we are rounding upwards:
239          */
240         start_pfn = PFN_UP(__pa(_end));
241         setup_bootmem_allocator(start_pfn);
242 }
243 #else
244 extern void __init setup_memory(void);
245 #endif
246
247 void __init setup_arch(char **cmdline_p)
248 {
249         enable_mmu();
250
251         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
252
253 #ifdef CONFIG_BLK_DEV_RAM
254         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
255         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
256         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
257 #endif
258
259         if (!MOUNT_ROOT_RDONLY)
260                 root_mountflags &= ~MS_RDONLY;
261         init_mm.start_code = (unsigned long) _text;
262         init_mm.end_code = (unsigned long) _etext;
263         init_mm.end_data = (unsigned long) _edata;
264         init_mm.brk = (unsigned long) _end;
265
266         code_resource.start = virt_to_phys(_text);
267         code_resource.end = virt_to_phys(_etext)-1;
268         data_resource.start = virt_to_phys(_etext);
269         data_resource.end = virt_to_phys(_edata)-1;
270
271         memory_start = (unsigned long)__va(__MEMORY_START);
272         if (!memory_end)
273                 memory_end = memory_start + __MEMORY_SIZE;
274
275 #ifdef CONFIG_CMDLINE_BOOL
276         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
277 #else
278         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
279 #endif
280
281         /* Save unparsed command line copy for /proc/cmdline */
282         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
283         *cmdline_p = command_line;
284
285         parse_early_param();
286
287         sh_mv_setup();
288
289         /*
290          * Find the highest page frame number we have available
291          */
292         max_pfn = PFN_DOWN(__pa(memory_end));
293
294         /*
295          * Determine low and high memory ranges:
296          */
297         max_low_pfn = max_pfn;
298         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
299
300         nodes_clear(node_online_map);
301
302         /* Setup bootmem with available RAM */
303         setup_memory();
304         sparse_init();
305
306 #ifdef CONFIG_DUMMY_CONSOLE
307         conswitchp = &dummy_con;
308 #endif
309
310         /* Perform the machine specific initialisation */
311         if (likely(sh_mv.mv_setup))
312                 sh_mv.mv_setup(cmdline_p);
313
314         paging_init();
315
316 #ifdef CONFIG_SMP
317         plat_smp_setup();
318 #endif
319 }
320
321 static const char *cpu_name[] = {
322         [CPU_SH7203]    = "SH7203",     [CPU_SH7263]    = "SH7263",
323         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
324         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
325         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
326         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
327         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
328         [CPU_SH7721]    = "SH7721",     [CPU_SH7729]    = "SH7729",
329         [CPU_SH7750]    = "SH7750",     [CPU_SH7750S]   = "SH7750S",
330         [CPU_SH7750R]   = "SH7750R",    [CPU_SH7751]    = "SH7751",
331         [CPU_SH7751R]   = "SH7751R",    [CPU_SH7760]    = "SH7760",
332         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
333         [CPU_SH7763]    = "SH7763",     [CPU_SH7770]    = "SH7770",
334         [CPU_SH7780]    = "SH7780",     [CPU_SH7781]    = "SH7781",
335         [CPU_SH7343]    = "SH7343",     [CPU_SH7785]    = "SH7785",
336         [CPU_SH7722]    = "SH7722",     [CPU_SHX3]      = "SH-X3",
337         [CPU_SH5_101]   = "SH5-101",    [CPU_SH5_103]   = "SH5-103",
338         [CPU_SH7366]    = "SH7366",     [CPU_SH_NONE]   = "Unknown"
339 };
340
341 const char *get_cpu_subtype(struct sh_cpuinfo *c)
342 {
343         return cpu_name[c->type];
344 }
345
346 #ifdef CONFIG_PROC_FS
347 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
348 static const char *cpu_flags[] = {
349         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
350         "ptea", "llsc", "l2", "op32", NULL
351 };
352
353 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
354 {
355         unsigned long i;
356
357         seq_printf(m, "cpu flags\t:");
358
359         if (!c->flags) {
360                 seq_printf(m, " %s\n", cpu_flags[0]);
361                 return;
362         }
363
364         for (i = 0; cpu_flags[i]; i++)
365                 if ((c->flags & (1 << i)))
366                         seq_printf(m, " %s", cpu_flags[i+1]);
367
368         seq_printf(m, "\n");
369 }
370
371 static void show_cacheinfo(struct seq_file *m, const char *type,
372                            struct cache_info info)
373 {
374         unsigned int cache_size;
375
376         cache_size = info.ways * info.sets * info.linesz;
377
378         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
379                    type, cache_size >> 10, info.ways);
380 }
381
382 /*
383  *      Get CPU information for use by the procfs.
384  */
385 static int show_cpuinfo(struct seq_file *m, void *v)
386 {
387         struct sh_cpuinfo *c = v;
388         unsigned int cpu = c - cpu_data;
389
390         if (!cpu_online(cpu))
391                 return 0;
392
393         if (cpu == 0)
394                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
395
396         seq_printf(m, "processor\t: %d\n", cpu);
397         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
398         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
399
400         show_cpuflags(m, c);
401
402         seq_printf(m, "cache type\t: ");
403
404         /*
405          * Check for what type of cache we have, we support both the
406          * unified cache on the SH-2 and SH-3, as well as the harvard
407          * style cache on the SH-4.
408          */
409         if (c->icache.flags & SH_CACHE_COMBINED) {
410                 seq_printf(m, "unified\n");
411                 show_cacheinfo(m, "cache", c->icache);
412         } else {
413                 seq_printf(m, "split (harvard)\n");
414                 show_cacheinfo(m, "icache", c->icache);
415                 show_cacheinfo(m, "dcache", c->dcache);
416         }
417
418         /* Optional secondary cache */
419         if (c->flags & CPU_HAS_L2_CACHE)
420                 show_cacheinfo(m, "scache", c->scache);
421
422         seq_printf(m, "bogomips\t: %lu.%02lu\n",
423                      c->loops_per_jiffy/(500000/HZ),
424                      (c->loops_per_jiffy/(5000/HZ)) % 100);
425
426         return 0;
427 }
428
429 static void *c_start(struct seq_file *m, loff_t *pos)
430 {
431         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
432 }
433 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
434 {
435         ++*pos;
436         return c_start(m, pos);
437 }
438 static void c_stop(struct seq_file *m, void *v)
439 {
440 }
441 const struct seq_operations cpuinfo_op = {
442         .start  = c_start,
443         .next   = c_next,
444         .stop   = c_stop,
445         .show   = show_cpuinfo,
446 };
447 #endif /* CONFIG_PROC_FS */
448
449 struct dentry *sh_debugfs_root;
450
451 static int __init sh_debugfs_init(void)
452 {
453         sh_debugfs_root = debugfs_create_dir("sh", NULL);
454         if (IS_ERR(sh_debugfs_root))
455                 return PTR_ERR(sh_debugfs_root);
456
457         return 0;
458 }
459 arch_initcall(sh_debugfs_init);