4 * Copyright IBM Corp. 2006
5 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
8 #include <linux/bootmem.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/hugetlb.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
20 static DEFINE_MUTEX(vmem_mutex);
22 struct memory_segment {
23 struct list_head list;
28 static LIST_HEAD(mem_segs);
30 static void __ref *vmem_alloc_pages(unsigned int order)
32 if (slab_is_available())
33 return (void *)__get_free_pages(GFP_KERNEL, order);
34 return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
37 static inline pud_t *vmem_pud_alloc(void)
42 pud = vmem_alloc_pages(2);
45 clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
50 static inline pmd_t *vmem_pmd_alloc(void)
55 pmd = vmem_alloc_pages(2);
58 clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
63 static pte_t __init_refok *vmem_pte_alloc(void)
67 if (slab_is_available())
68 pte = (pte_t *) page_table_alloc(&init_mm);
70 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
73 clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
74 PTRS_PER_PTE * sizeof(pte_t));
79 * Add a physical memory range to the 1:1 mapping.
81 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
83 unsigned long address;
91 for (address = start; address < start + size; address += PAGE_SIZE) {
92 pg_dir = pgd_offset_k(address);
93 if (pgd_none(*pg_dir)) {
94 pu_dir = vmem_pud_alloc();
97 pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
100 pu_dir = pud_offset(pg_dir, address);
101 if (pud_none(*pu_dir)) {
102 pm_dir = vmem_pmd_alloc();
105 pud_populate_kernel(&init_mm, pu_dir, pm_dir);
108 pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
109 pm_dir = pmd_offset(pu_dir, address);
112 if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
113 (address + HPAGE_SIZE <= start + size) &&
114 (address >= HPAGE_SIZE)) {
115 pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
116 pmd_val(*pm_dir) = pte_val(pte);
117 address += HPAGE_SIZE - PAGE_SIZE;
121 if (pmd_none(*pm_dir)) {
122 pt_dir = vmem_pte_alloc();
125 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
128 pt_dir = pte_offset_kernel(pm_dir, address);
133 flush_tlb_kernel_range(start, start + size);
138 * Remove a physical memory range from the 1:1 mapping.
139 * Currently only invalidates page table entries.
141 static void vmem_remove_range(unsigned long start, unsigned long size)
143 unsigned long address;
150 pte_val(pte) = _PAGE_TYPE_EMPTY;
151 for (address = start; address < start + size; address += PAGE_SIZE) {
152 pg_dir = pgd_offset_k(address);
153 pu_dir = pud_offset(pg_dir, address);
154 if (pud_none(*pu_dir))
156 pm_dir = pmd_offset(pu_dir, address);
157 if (pmd_none(*pm_dir))
160 if (pmd_huge(*pm_dir)) {
161 pmd_clear_kernel(pm_dir);
162 address += HPAGE_SIZE - PAGE_SIZE;
166 pt_dir = pte_offset_kernel(pm_dir, address);
169 flush_tlb_kernel_range(start, start + size);
173 * Add a backed mem_map array to the virtual mem_map array.
175 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
177 unsigned long address, start_addr, end_addr;
185 start_addr = (unsigned long) start;
186 end_addr = (unsigned long) (start + nr);
188 for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
189 pg_dir = pgd_offset_k(address);
190 if (pgd_none(*pg_dir)) {
191 pu_dir = vmem_pud_alloc();
194 pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
197 pu_dir = pud_offset(pg_dir, address);
198 if (pud_none(*pu_dir)) {
199 pm_dir = vmem_pmd_alloc();
202 pud_populate_kernel(&init_mm, pu_dir, pm_dir);
205 pm_dir = pmd_offset(pu_dir, address);
206 if (pmd_none(*pm_dir)) {
207 pt_dir = vmem_pte_alloc();
210 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
213 pt_dir = pte_offset_kernel(pm_dir, address);
214 if (pte_none(*pt_dir)) {
215 unsigned long new_page;
217 new_page =__pa(vmem_alloc_pages(0));
220 pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
226 flush_tlb_kernel_range(start_addr, end_addr);
231 * Add memory segment to the segment list if it doesn't overlap with
232 * an already present segment.
234 static int insert_memory_segment(struct memory_segment *seg)
236 struct memory_segment *tmp;
238 if (seg->start + seg->size >= VMEM_MAX_PHYS ||
239 seg->start + seg->size < seg->start)
242 list_for_each_entry(tmp, &mem_segs, list) {
243 if (seg->start >= tmp->start + tmp->size)
245 if (seg->start + seg->size <= tmp->start)
249 list_add(&seg->list, &mem_segs);
254 * Remove memory segment from the segment list.
256 static void remove_memory_segment(struct memory_segment *seg)
258 list_del(&seg->list);
261 static void __remove_shared_memory(struct memory_segment *seg)
263 remove_memory_segment(seg);
264 vmem_remove_range(seg->start, seg->size);
267 int vmem_remove_mapping(unsigned long start, unsigned long size)
269 struct memory_segment *seg;
272 mutex_lock(&vmem_mutex);
275 list_for_each_entry(seg, &mem_segs, list) {
276 if (seg->start == start && seg->size == size)
280 if (seg->start != start || seg->size != size)
284 __remove_shared_memory(seg);
287 mutex_unlock(&vmem_mutex);
291 int vmem_add_mapping(unsigned long start, unsigned long size)
293 struct memory_segment *seg;
296 mutex_lock(&vmem_mutex);
298 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
304 ret = insert_memory_segment(seg);
308 ret = vmem_add_mem(start, size, 0);
314 __remove_shared_memory(seg);
318 mutex_unlock(&vmem_mutex);
323 * map whole physical memory to virtual memory (identity mapping)
324 * we reserve enough space in the vmalloc area for vmemmap to hotplug
325 * additional memory segments.
327 void __init vmem_map_init(void)
329 unsigned long ro_start, ro_end;
330 unsigned long start, end;
333 INIT_LIST_HEAD(&init_mm.context.crst_list);
334 INIT_LIST_HEAD(&init_mm.context.pgtable_list);
335 init_mm.context.noexec = 0;
336 ro_start = ((unsigned long)&_stext) & PAGE_MASK;
337 ro_end = PFN_ALIGN((unsigned long)&_eshared);
338 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
339 start = memory_chunk[i].addr;
340 end = memory_chunk[i].addr + memory_chunk[i].size;
341 if (start >= ro_end || end <= ro_start)
342 vmem_add_mem(start, end - start, 0);
343 else if (start >= ro_start && end <= ro_end)
344 vmem_add_mem(start, end - start, 1);
345 else if (start >= ro_start) {
346 vmem_add_mem(start, ro_end - start, 1);
347 vmem_add_mem(ro_end, end - ro_end, 0);
348 } else if (end < ro_end) {
349 vmem_add_mem(start, ro_start - start, 0);
350 vmem_add_mem(ro_start, end - ro_start, 1);
352 vmem_add_mem(start, ro_start - start, 0);
353 vmem_add_mem(ro_start, ro_end - ro_start, 1);
354 vmem_add_mem(ro_end, end - ro_end, 0);
360 * Convert memory chunk array to a memory segment list so there is a single
361 * list that contains both r/w memory and shared memory segments.
363 static int __init vmem_convert_memory_chunk(void)
365 struct memory_segment *seg;
368 mutex_lock(&vmem_mutex);
369 for (i = 0; i < MEMORY_CHUNKS; i++) {
370 if (!memory_chunk[i].size)
372 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
374 panic("Out of memory...\n");
375 seg->start = memory_chunk[i].addr;
376 seg->size = memory_chunk[i].size;
377 insert_memory_segment(seg);
379 mutex_unlock(&vmem_mutex);
383 core_initcall(vmem_convert_memory_chunk);