]> err.no Git - linux-2.6/blob - arch/powerpc/platforms/iseries/setup.c
[POWERPC] Remove remaining iSeries debugger cruft
[linux-2.6] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
34 #include <asm/page.h>
35 #include <asm/mmu.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
42 #include <asm/system.h>
43 #include <asm/time.h>
44 #include <asm/paca.h>
45 #include <asm/cache.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/hv_lp_event.h>
54 #include <asm/iseries/lpar_map.h>
55 #include <asm/udbg.h>
56 #include <asm/irq.h>
57
58 #include "naca.h"
59 #include "setup.h"
60 #include "irq.h"
61 #include "vpd_areas.h"
62 #include "processor_vpd.h"
63 #include "main_store.h"
64 #include "call_sm.h"
65 #include "call_hpt.h"
66
67 #ifdef DEBUG
68 #define DBG(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG(fmt...)
71 #endif
72
73 /* Function Prototypes */
74 static unsigned long build_iSeries_Memory_Map(void);
75 static void iseries_shared_idle(void);
76 static void iseries_dedicated_idle(void);
77 #ifdef CONFIG_PCI
78 extern void iSeries_pci_final_fixup(void);
79 #else
80 static void iSeries_pci_final_fixup(void) { }
81 #endif
82
83 extern int rd_size;             /* Defined in drivers/block/rd.c */
84
85 extern unsigned long iSeries_recal_tb;
86 extern unsigned long iSeries_recal_titan;
87
88 struct MemoryBlock {
89         unsigned long absStart;
90         unsigned long absEnd;
91         unsigned long logicalStart;
92         unsigned long logicalEnd;
93 };
94
95 /*
96  * Process the main store vpd to determine where the holes in memory are
97  * and return the number of physical blocks and fill in the array of
98  * block data.
99  */
100 static unsigned long iSeries_process_Condor_mainstore_vpd(
101                 struct MemoryBlock *mb_array, unsigned long max_entries)
102 {
103         unsigned long holeFirstChunk, holeSizeChunks;
104         unsigned long numMemoryBlocks = 1;
105         struct IoHriMainStoreSegment4 *msVpd =
106                 (struct IoHriMainStoreSegment4 *)xMsVpd;
107         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
108         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
109         unsigned long holeSize = holeEnd - holeStart;
110
111         printk("Mainstore_VPD: Condor\n");
112         /*
113          * Determine if absolute memory has any
114          * holes so that we can interpret the
115          * access map we get back from the hypervisor
116          * correctly.
117          */
118         mb_array[0].logicalStart = 0;
119         mb_array[0].logicalEnd = 0x100000000;
120         mb_array[0].absStart = 0;
121         mb_array[0].absEnd = 0x100000000;
122
123         if (holeSize) {
124                 numMemoryBlocks = 2;
125                 holeStart = holeStart & 0x000fffffffffffff;
126                 holeStart = addr_to_chunk(holeStart);
127                 holeFirstChunk = holeStart;
128                 holeSize = addr_to_chunk(holeSize);
129                 holeSizeChunks = holeSize;
130                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
131                                 holeFirstChunk, holeSizeChunks );
132                 mb_array[0].logicalEnd = holeFirstChunk;
133                 mb_array[0].absEnd = holeFirstChunk;
134                 mb_array[1].logicalStart = holeFirstChunk;
135                 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
136                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
137                 mb_array[1].absEnd = 0x100000000;
138         }
139         return numMemoryBlocks;
140 }
141
142 #define MaxSegmentAreas                 32
143 #define MaxSegmentAdrRangeBlocks        128
144 #define MaxAreaRangeBlocks              4
145
146 static unsigned long iSeries_process_Regatta_mainstore_vpd(
147                 struct MemoryBlock *mb_array, unsigned long max_entries)
148 {
149         struct IoHriMainStoreSegment5 *msVpdP =
150                 (struct IoHriMainStoreSegment5 *)xMsVpd;
151         unsigned long numSegmentBlocks = 0;
152         u32 existsBits = msVpdP->msAreaExists;
153         unsigned long area_num;
154
155         printk("Mainstore_VPD: Regatta\n");
156
157         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
158                 unsigned long numAreaBlocks;
159                 struct IoHriMainStoreArea4 *currentArea;
160
161                 if (existsBits & 0x80000000) {
162                         unsigned long block_num;
163
164                         currentArea = &msVpdP->msAreaArray[area_num];
165                         numAreaBlocks = currentArea->numAdrRangeBlocks;
166                         printk("ms_vpd: processing area %2ld  blocks=%ld",
167                                         area_num, numAreaBlocks);
168                         for (block_num = 0; block_num < numAreaBlocks;
169                                         ++block_num ) {
170                                 /* Process an address range block */
171                                 struct MemoryBlock tempBlock;
172                                 unsigned long i;
173
174                                 tempBlock.absStart =
175                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
176                                 tempBlock.absEnd =
177                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
178                                 tempBlock.logicalStart = 0;
179                                 tempBlock.logicalEnd   = 0;
180                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
181                                                 block_num, tempBlock.absStart,
182                                                 tempBlock.absEnd);
183
184                                 for (i = 0; i < numSegmentBlocks; ++i) {
185                                         if (mb_array[i].absStart ==
186                                                         tempBlock.absStart)
187                                                 break;
188                                 }
189                                 if (i == numSegmentBlocks) {
190                                         if (numSegmentBlocks == max_entries)
191                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
192                                         mb_array[numSegmentBlocks] = tempBlock;
193                                         ++numSegmentBlocks;
194                                 } else
195                                         printk(" (duplicate)");
196                         }
197                         printk("\n");
198                 }
199                 existsBits <<= 1;
200         }
201         /* Now sort the blocks found into ascending sequence */
202         if (numSegmentBlocks > 1) {
203                 unsigned long m, n;
204
205                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
206                         for (n = numSegmentBlocks - 1; m < n; --n) {
207                                 if (mb_array[n].absStart <
208                                                 mb_array[n-1].absStart) {
209                                         struct MemoryBlock tempBlock;
210
211                                         tempBlock = mb_array[n];
212                                         mb_array[n] = mb_array[n-1];
213                                         mb_array[n-1] = tempBlock;
214                                 }
215                         }
216                 }
217         }
218         /*
219          * Assign "logical" addresses to each block.  These
220          * addresses correspond to the hypervisor "bitmap" space.
221          * Convert all addresses into units of 256K chunks.
222          */
223         {
224         unsigned long i, nextBitmapAddress;
225
226         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
227         nextBitmapAddress = 0;
228         for (i = 0; i < numSegmentBlocks; ++i) {
229                 unsigned long length = mb_array[i].absEnd -
230                         mb_array[i].absStart;
231
232                 mb_array[i].logicalStart = nextBitmapAddress;
233                 mb_array[i].logicalEnd = nextBitmapAddress + length;
234                 nextBitmapAddress += length;
235                 printk("          Bitmap range: %016lx - %016lx\n"
236                                 "        Absolute range: %016lx - %016lx\n",
237                                 mb_array[i].logicalStart,
238                                 mb_array[i].logicalEnd,
239                                 mb_array[i].absStart, mb_array[i].absEnd);
240                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
241                                 0x000fffffffffffff);
242                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
243                                 0x000fffffffffffff);
244                 mb_array[i].logicalStart =
245                         addr_to_chunk(mb_array[i].logicalStart);
246                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
247         }
248         }
249
250         return numSegmentBlocks;
251 }
252
253 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
254                 unsigned long max_entries)
255 {
256         unsigned long i;
257         unsigned long mem_blocks = 0;
258
259         if (cpu_has_feature(CPU_FTR_SLB))
260                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
261                                 max_entries);
262         else
263                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
264                                 max_entries);
265
266         printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
267         for (i = 0; i < mem_blocks; ++i) {
268                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
269                        "                             abs chunks %016lx - %016lx\n",
270                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
271                         mb_array[i].absStart, mb_array[i].absEnd);
272         }
273         return mem_blocks;
274 }
275
276 static void __init iSeries_get_cmdline(void)
277 {
278         char *p, *q;
279
280         /* copy the command line parameter from the primary VSP  */
281         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
282                         HvLpDma_Direction_RemoteToLocal);
283
284         p = cmd_line;
285         q = cmd_line + 255;
286         while(p < q) {
287                 if (!*p || *p == '\n')
288                         break;
289                 ++p;
290         }
291         *p = 0;
292 }
293
294 static void __init iSeries_init_early(void)
295 {
296         DBG(" -> iSeries_init_early()\n");
297
298         ppc64_interrupt_controller = IC_ISERIES;
299
300 #if defined(CONFIG_BLK_DEV_INITRD)
301         /*
302          * If the init RAM disk has been configured and there is
303          * a non-zero starting address for it, set it up
304          */
305         if (naca.xRamDisk) {
306                 initrd_start = (unsigned long)__va(naca.xRamDisk);
307                 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
308                 initrd_below_start_ok = 1;      // ramdisk in kernel space
309                 ROOT_DEV = Root_RAM0;
310                 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
311                         rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
312         } else
313 #endif /* CONFIG_BLK_DEV_INITRD */
314         {
315             /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
316         }
317
318         iSeries_recal_tb = get_tb();
319         iSeries_recal_titan = HvCallXm_loadTod();
320
321         /*
322          * Initialize the hash table management pointers
323          */
324         hpte_init_iSeries();
325
326         /*
327          * Initialize the DMA/TCE management
328          */
329         iommu_init_early_iSeries();
330
331         /* Initialize machine-dependency vectors */
332 #ifdef CONFIG_SMP
333         smp_init_iSeries();
334 #endif
335
336         /* Associate Lp Event Queue 0 with processor 0 */
337         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
338
339         mf_init();
340
341         /* If we were passed an initrd, set the ROOT_DEV properly if the values
342          * look sensible. If not, clear initrd reference.
343          */
344 #ifdef CONFIG_BLK_DEV_INITRD
345         if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
346             initrd_end > initrd_start)
347                 ROOT_DEV = Root_RAM0;
348         else
349                 initrd_start = initrd_end = 0;
350 #endif /* CONFIG_BLK_DEV_INITRD */
351
352         DBG(" <- iSeries_init_early()\n");
353 }
354
355 struct mschunks_map mschunks_map = {
356         /* XXX We don't use these, but Piranha might need them. */
357         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
358         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
359         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
360 };
361 EXPORT_SYMBOL(mschunks_map);
362
363 void mschunks_alloc(unsigned long num_chunks)
364 {
365         klimit = _ALIGN(klimit, sizeof(u32));
366         mschunks_map.mapping = (u32 *)klimit;
367         klimit += num_chunks * sizeof(u32);
368         mschunks_map.num_chunks = num_chunks;
369 }
370
371 /*
372  * The iSeries may have very large memories ( > 128 GB ) and a partition
373  * may get memory in "chunks" that may be anywhere in the 2**52 real
374  * address space.  The chunks are 256K in size.  To map this to the
375  * memory model Linux expects, the AS/400 specific code builds a
376  * translation table to translate what Linux thinks are "physical"
377  * addresses to the actual real addresses.  This allows us to make
378  * it appear to Linux that we have contiguous memory starting at
379  * physical address zero while in fact this could be far from the truth.
380  * To avoid confusion, I'll let the words physical and/or real address
381  * apply to the Linux addresses while I'll use "absolute address" to
382  * refer to the actual hardware real address.
383  *
384  * build_iSeries_Memory_Map gets information from the Hypervisor and
385  * looks at the Main Store VPD to determine the absolute addresses
386  * of the memory that has been assigned to our partition and builds
387  * a table used to translate Linux's physical addresses to these
388  * absolute addresses.  Absolute addresses are needed when
389  * communicating with the hypervisor (e.g. to build HPT entries)
390  *
391  * Returns the physical memory size
392  */
393
394 static unsigned long __init build_iSeries_Memory_Map(void)
395 {
396         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
397         u32 nextPhysChunk;
398         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
399         u32 totalChunks,moreChunks;
400         u32 currChunk, thisChunk, absChunk;
401         u32 currDword;
402         u32 chunkBit;
403         u64 map;
404         struct MemoryBlock mb[32];
405         unsigned long numMemoryBlocks, curBlock;
406
407         /* Chunk size on iSeries is 256K bytes */
408         totalChunks = (u32)HvLpConfig_getMsChunks();
409         mschunks_alloc(totalChunks);
410
411         /*
412          * Get absolute address of our load area
413          * and map it to physical address 0
414          * This guarantees that the loadarea ends up at physical 0
415          * otherwise, it might not be returned by PLIC as the first
416          * chunks
417          */
418
419         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
420         loadAreaSize =  itLpNaca.xLoadAreaChunks;
421
422         /*
423          * Only add the pages already mapped here.
424          * Otherwise we might add the hpt pages
425          * The rest of the pages of the load area
426          * aren't in the HPT yet and can still
427          * be assigned an arbitrary physical address
428          */
429         if ((loadAreaSize * 64) > HvPagesToMap)
430                 loadAreaSize = HvPagesToMap / 64;
431
432         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
433
434         /*
435          * TODO Do we need to do something if the HPT is in the 64MB load area?
436          * This would be required if the itLpNaca.xLoadAreaChunks includes
437          * the HPT size
438          */
439
440         printk("Mapping load area - physical addr = 0000000000000000\n"
441                 "                    absolute addr = %016lx\n",
442                 chunk_to_addr(loadAreaFirstChunk));
443         printk("Load area size %dK\n", loadAreaSize * 256);
444
445         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
446                 mschunks_map.mapping[nextPhysChunk] =
447                         loadAreaFirstChunk + nextPhysChunk;
448
449         /*
450          * Get absolute address of our HPT and remember it so
451          * we won't map it to any physical address
452          */
453         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
454         hptSizePages = (u32)HvCallHpt_getHptPages();
455         hptSizeChunks = hptSizePages >>
456                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
457         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
458
459         printk("HPT absolute addr = %016lx, size = %dK\n",
460                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
461
462         /*
463          * Determine if absolute memory has any
464          * holes so that we can interpret the
465          * access map we get back from the hypervisor
466          * correctly.
467          */
468         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
469
470         /*
471          * Process the main store access map from the hypervisor
472          * to build up our physical -> absolute translation table
473          */
474         curBlock = 0;
475         currChunk = 0;
476         currDword = 0;
477         moreChunks = totalChunks;
478
479         while (moreChunks) {
480                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
481                                 currDword);
482                 thisChunk = currChunk;
483                 while (map) {
484                         chunkBit = map >> 63;
485                         map <<= 1;
486                         if (chunkBit) {
487                                 --moreChunks;
488                                 while (thisChunk >= mb[curBlock].logicalEnd) {
489                                         ++curBlock;
490                                         if (curBlock >= numMemoryBlocks)
491                                                 panic("out of memory blocks");
492                                 }
493                                 if (thisChunk < mb[curBlock].logicalStart)
494                                         panic("memory block error");
495
496                                 absChunk = mb[curBlock].absStart +
497                                         (thisChunk - mb[curBlock].logicalStart);
498                                 if (((absChunk < hptFirstChunk) ||
499                                      (absChunk > hptLastChunk)) &&
500                                     ((absChunk < loadAreaFirstChunk) ||
501                                      (absChunk > loadAreaLastChunk))) {
502                                         mschunks_map.mapping[nextPhysChunk] =
503                                                 absChunk;
504                                         ++nextPhysChunk;
505                                 }
506                         }
507                         ++thisChunk;
508                 }
509                 ++currDword;
510                 currChunk += 64;
511         }
512
513         /*
514          * main store size (in chunks) is
515          *   totalChunks - hptSizeChunks
516          * which should be equal to
517          *   nextPhysChunk
518          */
519         return chunk_to_addr(nextPhysChunk);
520 }
521
522 /*
523  * Document me.
524  */
525 static void __init iSeries_setup_arch(void)
526 {
527         if (get_lppaca()->shared_proc) {
528                 ppc_md.idle_loop = iseries_shared_idle;
529                 printk(KERN_DEBUG "Using shared processor idle loop\n");
530         } else {
531                 ppc_md.idle_loop = iseries_dedicated_idle;
532                 printk(KERN_DEBUG "Using dedicated idle loop\n");
533         }
534
535         /* Setup the Lp Event Queue */
536         setup_hvlpevent_queue();
537
538         printk("Max  logical processors = %d\n",
539                         itVpdAreas.xSlicMaxLogicalProcs);
540         printk("Max physical processors = %d\n",
541                         itVpdAreas.xSlicMaxPhysicalProcs);
542 }
543
544 static void iSeries_show_cpuinfo(struct seq_file *m)
545 {
546         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
547 }
548
549 static void __init iSeries_progress(char * st, unsigned short code)
550 {
551         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
552         mf_display_progress(code);
553 }
554
555 static void __init iSeries_fixup_klimit(void)
556 {
557         /*
558          * Change klimit to take into account any ram disk
559          * that may be included
560          */
561         if (naca.xRamDisk)
562                 klimit = KERNELBASE + (u64)naca.xRamDisk +
563                         (naca.xRamDiskSize * HW_PAGE_SIZE);
564 }
565
566 static int __init iSeries_src_init(void)
567 {
568         /* clear the progress line */
569         ppc_md.progress(" ", 0xffff);
570         return 0;
571 }
572
573 late_initcall(iSeries_src_init);
574
575 static inline void process_iSeries_events(void)
576 {
577         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
578 }
579
580 static void yield_shared_processor(void)
581 {
582         unsigned long tb;
583
584         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
585                                     HvCall_MaskLpEvent |
586                                     HvCall_MaskLpProd |
587                                     HvCall_MaskTimeout);
588
589         tb = get_tb();
590         /* Compute future tb value when yield should expire */
591         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
592
593         /*
594          * The decrementer stops during the yield.  Force a fake decrementer
595          * here and let the timer_interrupt code sort out the actual time.
596          */
597         get_lppaca()->int_dword.fields.decr_int = 1;
598         ppc64_runlatch_on();
599         process_iSeries_events();
600 }
601
602 static void iseries_shared_idle(void)
603 {
604         while (1) {
605                 while (!need_resched() && !hvlpevent_is_pending()) {
606                         local_irq_disable();
607                         ppc64_runlatch_off();
608
609                         /* Recheck with irqs off */
610                         if (!need_resched() && !hvlpevent_is_pending())
611                                 yield_shared_processor();
612
613                         HMT_medium();
614                         local_irq_enable();
615                 }
616
617                 ppc64_runlatch_on();
618
619                 if (hvlpevent_is_pending())
620                         process_iSeries_events();
621
622                 preempt_enable_no_resched();
623                 schedule();
624                 preempt_disable();
625         }
626 }
627
628 static void iseries_dedicated_idle(void)
629 {
630         set_thread_flag(TIF_POLLING_NRFLAG);
631
632         while (1) {
633                 if (!need_resched()) {
634                         while (!need_resched()) {
635                                 ppc64_runlatch_off();
636                                 HMT_low();
637
638                                 if (hvlpevent_is_pending()) {
639                                         HMT_medium();
640                                         ppc64_runlatch_on();
641                                         process_iSeries_events();
642                                 }
643                         }
644
645                         HMT_medium();
646                 }
647
648                 ppc64_runlatch_on();
649                 preempt_enable_no_resched();
650                 schedule();
651                 preempt_disable();
652         }
653 }
654
655 #ifndef CONFIG_PCI
656 void __init iSeries_init_IRQ(void) { }
657 #endif
658
659 static int __init iseries_probe(void)
660 {
661         unsigned long root = of_get_flat_dt_root();
662         if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
663                 return 0;
664
665         powerpc_firmware_features |= FW_FEATURE_ISERIES;
666         powerpc_firmware_features |= FW_FEATURE_LPAR;
667
668         /*
669          * The Hypervisor only allows us up to 256 interrupt
670          * sources (the irq number is passed in a u8).
671          */
672         virt_irq_max = 255;
673
674         return 1;
675 }
676
677 define_machine(iseries) {
678         .name           = "iSeries",
679         .setup_arch     = iSeries_setup_arch,
680         .show_cpuinfo   = iSeries_show_cpuinfo,
681         .init_IRQ       = iSeries_init_IRQ,
682         .get_irq        = iSeries_get_irq,
683         .init_early     = iSeries_init_early,
684         .pcibios_fixup  = iSeries_pci_final_fixup,
685         .restart        = mf_reboot,
686         .power_off      = mf_power_off,
687         .halt           = mf_power_off,
688         .get_boot_time  = iSeries_get_boot_time,
689         .set_rtc_time   = iSeries_set_rtc_time,
690         .get_rtc_time   = iSeries_get_rtc_time,
691         .calibrate_decr = generic_calibrate_decr,
692         .progress       = iSeries_progress,
693         .probe          = iseries_probe,
694         /* XXX Implement enable_pmcs for iSeries */
695 };
696
697 void * __init iSeries_early_setup(void)
698 {
699         unsigned long phys_mem_size;
700
701         iSeries_fixup_klimit();
702
703         /*
704          * Initialize the table which translate Linux physical addresses to
705          * AS/400 absolute addresses
706          */
707         phys_mem_size = build_iSeries_Memory_Map();
708
709         iSeries_get_cmdline();
710
711         return (void *) __pa(build_flat_dt(phys_mem_size));
712 }
713
714 static void hvputc(char c)
715 {
716         if (c == '\n')
717                 hvputc('\r');
718
719         HvCall_writeLogBuffer(&c, 1);
720 }
721
722 void __init udbg_init_iseries(void)
723 {
724         udbg_putc = hvputc;
725 }