]> err.no Git - linux-2.6/blob - arch/ia64/kernel/topology.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[linux-2.6] / arch / ia64 / kernel / topology.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  *              2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *      Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *      Populate cpu cache entries in sysfs for cpu cache info
14  */
15
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <asm/mmzone.h>
25 #include <asm/numa.h>
26 #include <asm/cpu.h>
27
28 static struct ia64_cpu *sysfs_cpus;
29
30 void arch_fix_phys_package_id(int num, u32 slot)
31 {
32 #ifdef CONFIG_SMP
33         if (cpu_data(num)->socket_id == -1)
34                 cpu_data(num)->socket_id = slot;
35 #endif
36 }
37 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
38
39 int arch_register_cpu(int num)
40 {
41 #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)
42         /*
43          * If CPEI can be re-targetted or if this is not
44          * CPEI target, then it is hotpluggable
45          */
46         if (can_cpei_retarget() || !is_cpu_cpei_target(num))
47                 sysfs_cpus[num].cpu.hotpluggable = 1;
48         map_cpu_to_node(num, node_cpuid[num].nid);
49 #endif
50
51         return register_cpu(&sysfs_cpus[num].cpu, num);
52 }
53
54 #ifdef CONFIG_HOTPLUG_CPU
55
56 void arch_unregister_cpu(int num)
57 {
58         unregister_cpu(&sysfs_cpus[num].cpu);
59         unmap_cpu_from_node(num, cpu_to_node(num));
60 }
61 EXPORT_SYMBOL(arch_register_cpu);
62 EXPORT_SYMBOL(arch_unregister_cpu);
63 #endif /*CONFIG_HOTPLUG_CPU*/
64
65
66 static int __init topology_init(void)
67 {
68         int i, err = 0;
69
70 #ifdef CONFIG_NUMA
71         /*
72          * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
73          */
74         for_each_online_node(i) {
75                 if ((err = register_one_node(i)))
76                         goto out;
77         }
78 #endif
79
80         sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
81         if (!sysfs_cpus)
82                 panic("kzalloc in topology_init failed - NR_CPUS too big?");
83
84         for_each_present_cpu(i) {
85                 if((err = arch_register_cpu(i)))
86                         goto out;
87         }
88 out:
89         return err;
90 }
91
92 subsys_initcall(topology_init);
93
94
95 /*
96  * Export cpu cache information through sysfs
97  */
98
99 /*
100  *  A bunch of string array to get pretty printing
101  */
102 static const char *cache_types[] = {
103         "",                     /* not used */
104         "Instruction",
105         "Data",
106         "Unified"       /* unified */
107 };
108
109 static const char *cache_mattrib[]={
110         "WriteThrough",
111         "WriteBack",
112         "",             /* reserved */
113         ""              /* reserved */
114 };
115
116 struct cache_info {
117         pal_cache_config_info_t cci;
118         cpumask_t shared_cpu_map;
119         int level;
120         int type;
121         struct kobject kobj;
122 };
123
124 struct cpu_cache_info {
125         struct cache_info *cache_leaves;
126         int     num_cache_leaves;
127         struct kobject kobj;
128 };
129
130 static struct cpu_cache_info    all_cpu_cache_info[NR_CPUS] __cpuinitdata;
131 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
132
133 #ifdef CONFIG_SMP
134 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
135                 struct cache_info * this_leaf)
136 {
137         pal_cache_shared_info_t csi;
138         int num_shared, i = 0;
139         unsigned int j;
140
141         if (cpu_data(cpu)->threads_per_core <= 1 &&
142                 cpu_data(cpu)->cores_per_socket <= 1) {
143                 cpu_set(cpu, this_leaf->shared_cpu_map);
144                 return;
145         }
146
147         if (ia64_pal_cache_shared_info(this_leaf->level,
148                                         this_leaf->type,
149                                         0,
150                                         &csi) != PAL_STATUS_SUCCESS)
151                 return;
152
153         num_shared = (int) csi.num_shared;
154         do {
155                 for_each_possible_cpu(j)
156                         if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
157                                 && cpu_data(j)->core_id == csi.log1_cid
158                                 && cpu_data(j)->thread_id == csi.log1_tid)
159                                 cpu_set(j, this_leaf->shared_cpu_map);
160
161                 i++;
162         } while (i < num_shared &&
163                 ia64_pal_cache_shared_info(this_leaf->level,
164                                 this_leaf->type,
165                                 i,
166                                 &csi) == PAL_STATUS_SUCCESS);
167 }
168 #else
169 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
170                 struct cache_info * this_leaf)
171 {
172         cpu_set(cpu, this_leaf->shared_cpu_map);
173         return;
174 }
175 #endif
176
177 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
178                                         char *buf)
179 {
180         return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
181 }
182
183 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
184                                         char *buf)
185 {
186         return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
187 }
188
189 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
190 {
191         return sprintf(buf,
192                         "%s\n",
193                         cache_mattrib[this_leaf->cci.pcci_cache_attr]);
194 }
195
196 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
197 {
198         return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
199 }
200
201 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
202 {
203         unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
204         number_of_sets /= this_leaf->cci.pcci_assoc;
205         number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
206
207         return sprintf(buf, "%u\n", number_of_sets);
208 }
209
210 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
211 {
212         ssize_t len;
213         cpumask_t shared_cpu_map;
214
215         cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
216         len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
217         len += sprintf(buf+len, "\n");
218         return len;
219 }
220
221 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
222 {
223         int type = this_leaf->type + this_leaf->cci.pcci_unified;
224         return sprintf(buf, "%s\n", cache_types[type]);
225 }
226
227 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
228 {
229         return sprintf(buf, "%u\n", this_leaf->level);
230 }
231
232 struct cache_attr {
233         struct attribute attr;
234         ssize_t (*show)(struct cache_info *, char *);
235         ssize_t (*store)(struct cache_info *, const char *, size_t count);
236 };
237
238 #ifdef define_one_ro
239         #undef define_one_ro
240 #endif
241 #define define_one_ro(_name) \
242         static struct cache_attr _name = \
243 __ATTR(_name, 0444, show_##_name, NULL)
244
245 define_one_ro(level);
246 define_one_ro(type);
247 define_one_ro(coherency_line_size);
248 define_one_ro(ways_of_associativity);
249 define_one_ro(size);
250 define_one_ro(number_of_sets);
251 define_one_ro(shared_cpu_map);
252 define_one_ro(attributes);
253
254 static struct attribute * cache_default_attrs[] = {
255         &type.attr,
256         &level.attr,
257         &coherency_line_size.attr,
258         &ways_of_associativity.attr,
259         &attributes.attr,
260         &size.attr,
261         &number_of_sets.attr,
262         &shared_cpu_map.attr,
263         NULL
264 };
265
266 #define to_object(k) container_of(k, struct cache_info, kobj)
267 #define to_attr(a) container_of(a, struct cache_attr, attr)
268
269 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
270 {
271         struct cache_attr *fattr = to_attr(attr);
272         struct cache_info *this_leaf = to_object(kobj);
273         ssize_t ret;
274
275         ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
276         return ret;
277 }
278
279 static struct sysfs_ops cache_sysfs_ops = {
280         .show   = cache_show
281 };
282
283 static struct kobj_type cache_ktype = {
284         .sysfs_ops      = &cache_sysfs_ops,
285         .default_attrs  = cache_default_attrs,
286 };
287
288 static struct kobj_type cache_ktype_percpu_entry = {
289         .sysfs_ops      = &cache_sysfs_ops,
290 };
291
292 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
293 {
294         kfree(all_cpu_cache_info[cpu].cache_leaves);
295         all_cpu_cache_info[cpu].cache_leaves = NULL;
296         all_cpu_cache_info[cpu].num_cache_leaves = 0;
297         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
298         return;
299 }
300
301 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
302 {
303         u64 i, levels, unique_caches;
304         pal_cache_config_info_t cci;
305         int j;
306         s64 status;
307         struct cache_info *this_cache;
308         int num_cache_leaves = 0;
309
310         if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
311                 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
312                 return -1;
313         }
314
315         this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
316                         GFP_KERNEL);
317         if (this_cache == NULL)
318                 return -ENOMEM;
319
320         for (i=0; i < levels; i++) {
321                 for (j=2; j >0 ; j--) {
322                         if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
323                                         PAL_STATUS_SUCCESS)
324                                 continue;
325
326                         this_cache[num_cache_leaves].cci = cci;
327                         this_cache[num_cache_leaves].level = i + 1;
328                         this_cache[num_cache_leaves].type = j;
329
330                         cache_shared_cpu_map_setup(cpu,
331                                         &this_cache[num_cache_leaves]);
332                         num_cache_leaves ++;
333                 }
334         }
335
336         all_cpu_cache_info[cpu].cache_leaves = this_cache;
337         all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
338
339         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
340
341         return 0;
342 }
343
344 /* Add cache interface for CPU device */
345 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
346 {
347         unsigned int cpu = sys_dev->id;
348         unsigned long i, j;
349         struct cache_info *this_object;
350         int retval = 0;
351         cpumask_t oldmask;
352
353         if (all_cpu_cache_info[cpu].kobj.parent)
354                 return 0;
355
356         oldmask = current->cpus_allowed;
357         retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
358         if (unlikely(retval))
359                 return retval;
360
361         retval = cpu_cache_sysfs_init(cpu);
362         set_cpus_allowed(current, oldmask);
363         if (unlikely(retval < 0))
364                 return retval;
365
366         retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
367                                       &cache_ktype_percpu_entry, &sys_dev->kobj,
368                                       "%s", "cache");
369
370         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
371                 this_object = LEAF_KOBJECT_PTR(cpu,i);
372                 retval = kobject_init_and_add(&(this_object->kobj),
373                                               &cache_ktype,
374                                               &all_cpu_cache_info[cpu].kobj,
375                                               "index%1lu", i);
376                 if (unlikely(retval)) {
377                         for (j = 0; j < i; j++) {
378                                 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
379                         }
380                         kobject_put(&all_cpu_cache_info[cpu].kobj);
381                         cpu_cache_sysfs_exit(cpu);
382                         break;
383                 }
384                 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
385         }
386         kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
387         return retval;
388 }
389
390 /* Remove cache interface for CPU device */
391 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
392 {
393         unsigned int cpu = sys_dev->id;
394         unsigned long i;
395
396         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
397                 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
398
399         if (all_cpu_cache_info[cpu].kobj.parent) {
400                 kobject_put(&all_cpu_cache_info[cpu].kobj);
401                 memset(&all_cpu_cache_info[cpu].kobj,
402                         0,
403                         sizeof(struct kobject));
404         }
405
406         cpu_cache_sysfs_exit(cpu);
407
408         return 0;
409 }
410
411 /*
412  * When a cpu is hot-plugged, do a check and initiate
413  * cache kobject if necessary
414  */
415 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
416                 unsigned long action, void *hcpu)
417 {
418         unsigned int cpu = (unsigned long)hcpu;
419         struct sys_device *sys_dev;
420
421         sys_dev = get_cpu_sysdev(cpu);
422         switch (action) {
423         case CPU_ONLINE:
424         case CPU_ONLINE_FROZEN:
425                 cache_add_dev(sys_dev);
426                 break;
427         case CPU_DEAD:
428         case CPU_DEAD_FROZEN:
429                 cache_remove_dev(sys_dev);
430                 break;
431         }
432         return NOTIFY_OK;
433 }
434
435 static struct notifier_block __cpuinitdata cache_cpu_notifier =
436 {
437         .notifier_call = cache_cpu_callback
438 };
439
440 static int __init cache_sysfs_init(void)
441 {
442         int i;
443
444         for_each_online_cpu(i) {
445                 struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
446                 cache_add_dev(sys_dev);
447         }
448
449         register_hotcpu_notifier(&cache_cpu_notifier);
450
451         return 0;
452 }
453
454 device_initcall(cache_sysfs_init);
455