2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
19 #include <linux/node.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <asm/mmzone.h>
28 static struct ia64_cpu *sysfs_cpus;
30 void arch_fix_phys_package_id(int num, u32 slot)
33 if (cpu_data(num)->socket_id == -1)
34 cpu_data(num)->socket_id = slot;
37 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
40 #ifdef CONFIG_HOTPLUG_CPU
41 int __ref arch_register_cpu(int num)
45 * If CPEI can be re-targetted or if this is not
46 * CPEI target, then it is hotpluggable
48 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49 sysfs_cpus[num].cpu.hotpluggable = 1;
50 map_cpu_to_node(num, node_cpuid[num].nid);
52 return register_cpu(&sysfs_cpus[num].cpu, num);
54 EXPORT_SYMBOL(arch_register_cpu);
56 void arch_unregister_cpu(int num)
58 unregister_cpu(&sysfs_cpus[num].cpu);
59 unmap_cpu_from_node(num, cpu_to_node(num));
61 EXPORT_SYMBOL(arch_unregister_cpu);
63 static int __init arch_register_cpu(int num)
65 return register_cpu(&sysfs_cpus[num].cpu, num);
67 #endif /*CONFIG_HOTPLUG_CPU*/
70 static int __init topology_init(void)
76 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
78 for_each_online_node(i) {
79 if ((err = register_one_node(i)))
84 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
86 panic("kzalloc in topology_init failed - NR_CPUS too big?");
88 for_each_present_cpu(i) {
89 if((err = arch_register_cpu(i)))
96 subsys_initcall(topology_init);
100 * Export cpu cache information through sysfs
104 * A bunch of string array to get pretty printing
106 static const char *cache_types[] = {
110 "Unified" /* unified */
113 static const char *cache_mattrib[]={
121 pal_cache_config_info_t cci;
122 cpumask_t shared_cpu_map;
128 struct cpu_cache_info {
129 struct cache_info *cache_leaves;
130 int num_cache_leaves;
134 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS] __cpuinitdata;
135 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
138 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
139 struct cache_info * this_leaf)
141 pal_cache_shared_info_t csi;
142 int num_shared, i = 0;
145 if (cpu_data(cpu)->threads_per_core <= 1 &&
146 cpu_data(cpu)->cores_per_socket <= 1) {
147 cpu_set(cpu, this_leaf->shared_cpu_map);
151 if (ia64_pal_cache_shared_info(this_leaf->level,
154 &csi) != PAL_STATUS_SUCCESS)
157 num_shared = (int) csi.num_shared;
159 for_each_possible_cpu(j)
160 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
161 && cpu_data(j)->core_id == csi.log1_cid
162 && cpu_data(j)->thread_id == csi.log1_tid)
163 cpu_set(j, this_leaf->shared_cpu_map);
166 } while (i < num_shared &&
167 ia64_pal_cache_shared_info(this_leaf->level,
170 &csi) == PAL_STATUS_SUCCESS);
173 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
174 struct cache_info * this_leaf)
176 cpu_set(cpu, this_leaf->shared_cpu_map);
181 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
184 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
187 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
190 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
193 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
197 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
200 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
202 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
205 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
207 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
208 number_of_sets /= this_leaf->cci.pcci_assoc;
209 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
211 return sprintf(buf, "%u\n", number_of_sets);
214 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
217 cpumask_t shared_cpu_map;
219 cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
220 len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
221 len += sprintf(buf+len, "\n");
225 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
227 int type = this_leaf->type + this_leaf->cci.pcci_unified;
228 return sprintf(buf, "%s\n", cache_types[type]);
231 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
233 return sprintf(buf, "%u\n", this_leaf->level);
237 struct attribute attr;
238 ssize_t (*show)(struct cache_info *, char *);
239 ssize_t (*store)(struct cache_info *, const char *, size_t count);
245 #define define_one_ro(_name) \
246 static struct cache_attr _name = \
247 __ATTR(_name, 0444, show_##_name, NULL)
249 define_one_ro(level);
251 define_one_ro(coherency_line_size);
252 define_one_ro(ways_of_associativity);
254 define_one_ro(number_of_sets);
255 define_one_ro(shared_cpu_map);
256 define_one_ro(attributes);
258 static struct attribute * cache_default_attrs[] = {
261 &coherency_line_size.attr,
262 &ways_of_associativity.attr,
265 &number_of_sets.attr,
266 &shared_cpu_map.attr,
270 #define to_object(k) container_of(k, struct cache_info, kobj)
271 #define to_attr(a) container_of(a, struct cache_attr, attr)
273 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
275 struct cache_attr *fattr = to_attr(attr);
276 struct cache_info *this_leaf = to_object(kobj);
279 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
283 static struct sysfs_ops cache_sysfs_ops = {
287 static struct kobj_type cache_ktype = {
288 .sysfs_ops = &cache_sysfs_ops,
289 .default_attrs = cache_default_attrs,
292 static struct kobj_type cache_ktype_percpu_entry = {
293 .sysfs_ops = &cache_sysfs_ops,
296 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
298 kfree(all_cpu_cache_info[cpu].cache_leaves);
299 all_cpu_cache_info[cpu].cache_leaves = NULL;
300 all_cpu_cache_info[cpu].num_cache_leaves = 0;
301 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
305 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
307 u64 i, levels, unique_caches;
308 pal_cache_config_info_t cci;
311 struct cache_info *this_cache;
312 int num_cache_leaves = 0;
314 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
315 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
319 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
321 if (this_cache == NULL)
324 for (i=0; i < levels; i++) {
325 for (j=2; j >0 ; j--) {
326 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
330 this_cache[num_cache_leaves].cci = cci;
331 this_cache[num_cache_leaves].level = i + 1;
332 this_cache[num_cache_leaves].type = j;
334 cache_shared_cpu_map_setup(cpu,
335 &this_cache[num_cache_leaves]);
340 all_cpu_cache_info[cpu].cache_leaves = this_cache;
341 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
343 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
348 /* Add cache interface for CPU device */
349 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
351 unsigned int cpu = sys_dev->id;
353 struct cache_info *this_object;
357 if (all_cpu_cache_info[cpu].kobj.parent)
360 oldmask = current->cpus_allowed;
361 retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
362 if (unlikely(retval))
365 retval = cpu_cache_sysfs_init(cpu);
366 set_cpus_allowed(current, oldmask);
367 if (unlikely(retval < 0))
370 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
371 &cache_ktype_percpu_entry, &sys_dev->kobj,
374 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
375 this_object = LEAF_KOBJECT_PTR(cpu,i);
376 retval = kobject_init_and_add(&(this_object->kobj),
378 &all_cpu_cache_info[cpu].kobj,
380 if (unlikely(retval)) {
381 for (j = 0; j < i; j++) {
382 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
384 kobject_put(&all_cpu_cache_info[cpu].kobj);
385 cpu_cache_sysfs_exit(cpu);
388 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
390 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
394 /* Remove cache interface for CPU device */
395 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
397 unsigned int cpu = sys_dev->id;
400 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
401 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
403 if (all_cpu_cache_info[cpu].kobj.parent) {
404 kobject_put(&all_cpu_cache_info[cpu].kobj);
405 memset(&all_cpu_cache_info[cpu].kobj,
407 sizeof(struct kobject));
410 cpu_cache_sysfs_exit(cpu);
416 * When a cpu is hot-plugged, do a check and initiate
417 * cache kobject if necessary
419 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
420 unsigned long action, void *hcpu)
422 unsigned int cpu = (unsigned long)hcpu;
423 struct sys_device *sys_dev;
425 sys_dev = get_cpu_sysdev(cpu);
428 case CPU_ONLINE_FROZEN:
429 cache_add_dev(sys_dev);
432 case CPU_DEAD_FROZEN:
433 cache_remove_dev(sys_dev);
439 static struct notifier_block __cpuinitdata cache_cpu_notifier =
441 .notifier_call = cache_cpu_callback
444 static int __init cache_sysfs_init(void)
448 for_each_online_cpu(i) {
449 struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
450 cache_add_dev(sys_dev);
453 register_hotcpu_notifier(&cache_cpu_notifier);
458 device_initcall(cache_sysfs_init);