]> err.no Git - linux-2.6/blob - arch/ia64/kernel/efi.c
[IA64] efi.c Add /* never reached */ annotation
[linux-2.6] / arch / ia64 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *      David Mosberger-Tang <davidm@hpl.hp.com>
11  *      Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *      Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/time.h>
30 #include <linux/efi.h>
31 #include <linux/kexec.h>
32 #include <linux/mm.h>
33
34 #include <asm/io.h>
35 #include <asm/kregs.h>
36 #include <asm/meminit.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/mca.h>
40
41 #define EFI_DEBUG       0
42
43 extern efi_status_t efi_call_phys (void *, ...);
44
45 struct efi efi;
46 EXPORT_SYMBOL(efi);
47 static efi_runtime_services_t *runtime;
48 static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
49
50 #define efi_call_virt(f, args...)       (*(f))(args)
51
52 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
53 static efi_status_t                                                            \
54 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
55 {                                                                              \
56         struct ia64_fpreg fr[6];                                               \
57         efi_time_cap_t *atc = NULL;                                            \
58         efi_status_t ret;                                                      \
59                                                                                \
60         if (tc)                                                                \
61                 atc = adjust_arg(tc);                                          \
62         ia64_save_scratch_fpregs(fr);                                          \
63         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
64                                 adjust_arg(tm), atc);                          \
65         ia64_load_scratch_fpregs(fr);                                          \
66         return ret;                                                            \
67 }
68
69 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
70 static efi_status_t                                                            \
71 prefix##_set_time (efi_time_t *tm)                                             \
72 {                                                                              \
73         struct ia64_fpreg fr[6];                                               \
74         efi_status_t ret;                                                      \
75                                                                                \
76         ia64_save_scratch_fpregs(fr);                                          \
77         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
78                                 adjust_arg(tm));                               \
79         ia64_load_scratch_fpregs(fr);                                          \
80         return ret;                                                            \
81 }
82
83 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
84 static efi_status_t                                                            \
85 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
86                           efi_time_t *tm)                                      \
87 {                                                                              \
88         struct ia64_fpreg fr[6];                                               \
89         efi_status_t ret;                                                      \
90                                                                                \
91         ia64_save_scratch_fpregs(fr);                                          \
92         ret = efi_call_##prefix(                                               \
93                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
94                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
95         ia64_load_scratch_fpregs(fr);                                          \
96         return ret;                                                            \
97 }
98
99 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
100 static efi_status_t                                                            \
101 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
102 {                                                                              \
103         struct ia64_fpreg fr[6];                                               \
104         efi_time_t *atm = NULL;                                                \
105         efi_status_t ret;                                                      \
106                                                                                \
107         if (tm)                                                                \
108                 atm = adjust_arg(tm);                                          \
109         ia64_save_scratch_fpregs(fr);                                          \
110         ret = efi_call_##prefix(                                               \
111                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
112                 enabled, atm);                                                 \
113         ia64_load_scratch_fpregs(fr);                                          \
114         return ret;                                                            \
115 }
116
117 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
118 static efi_status_t                                                            \
119 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
120                        unsigned long *data_size, void *data)                   \
121 {                                                                              \
122         struct ia64_fpreg fr[6];                                               \
123         u32 *aattr = NULL;                                                     \
124         efi_status_t ret;                                                      \
125                                                                                \
126         if (attr)                                                              \
127                 aattr = adjust_arg(attr);                                      \
128         ia64_save_scratch_fpregs(fr);                                          \
129         ret = efi_call_##prefix(                                               \
130                 (efi_get_variable_t *) __va(runtime->get_variable),            \
131                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
132                 adjust_arg(data_size), adjust_arg(data));                      \
133         ia64_load_scratch_fpregs(fr);                                          \
134         return ret;                                                            \
135 }
136
137 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
138 static efi_status_t                                                            \
139 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
140                             efi_guid_t *vendor)                                \
141 {                                                                              \
142         struct ia64_fpreg fr[6];                                               \
143         efi_status_t ret;                                                      \
144                                                                                \
145         ia64_save_scratch_fpregs(fr);                                          \
146         ret = efi_call_##prefix(                                               \
147                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
148                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
149         ia64_load_scratch_fpregs(fr);                                          \
150         return ret;                                                            \
151 }
152
153 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
154 static efi_status_t                                                            \
155 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
156                        unsigned long attr, unsigned long data_size,            \
157                        void *data)                                             \
158 {                                                                              \
159         struct ia64_fpreg fr[6];                                               \
160         efi_status_t ret;                                                      \
161                                                                                \
162         ia64_save_scratch_fpregs(fr);                                          \
163         ret = efi_call_##prefix(                                               \
164                 (efi_set_variable_t *) __va(runtime->set_variable),            \
165                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
166                 adjust_arg(data));                                             \
167         ia64_load_scratch_fpregs(fr);                                          \
168         return ret;                                                            \
169 }
170
171 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
172 static efi_status_t                                                            \
173 prefix##_get_next_high_mono_count (u32 *count)                                 \
174 {                                                                              \
175         struct ia64_fpreg fr[6];                                               \
176         efi_status_t ret;                                                      \
177                                                                                \
178         ia64_save_scratch_fpregs(fr);                                          \
179         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
180                                 __va(runtime->get_next_high_mono_count),       \
181                                 adjust_arg(count));                            \
182         ia64_load_scratch_fpregs(fr);                                          \
183         return ret;                                                            \
184 }
185
186 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
187 static void                                                                    \
188 prefix##_reset_system (int reset_type, efi_status_t status,                    \
189                        unsigned long data_size, efi_char16_t *data)            \
190 {                                                                              \
191         struct ia64_fpreg fr[6];                                               \
192         efi_char16_t *adata = NULL;                                            \
193                                                                                \
194         if (data)                                                              \
195                 adata = adjust_arg(data);                                      \
196                                                                                \
197         ia64_save_scratch_fpregs(fr);                                          \
198         efi_call_##prefix(                                                     \
199                 (efi_reset_system_t *) __va(runtime->reset_system),            \
200                 reset_type, status, data_size, adata);                         \
201         /* should not return, but just in case... */                           \
202         ia64_load_scratch_fpregs(fr);                                          \
203 }
204
205 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
206
207 STUB_GET_TIME(phys, phys_ptr)
208 STUB_SET_TIME(phys, phys_ptr)
209 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
210 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
211 STUB_GET_VARIABLE(phys, phys_ptr)
212 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
213 STUB_SET_VARIABLE(phys, phys_ptr)
214 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
215 STUB_RESET_SYSTEM(phys, phys_ptr)
216
217 #define id(arg) arg
218
219 STUB_GET_TIME(virt, id)
220 STUB_SET_TIME(virt, id)
221 STUB_GET_WAKEUP_TIME(virt, id)
222 STUB_SET_WAKEUP_TIME(virt, id)
223 STUB_GET_VARIABLE(virt, id)
224 STUB_GET_NEXT_VARIABLE(virt, id)
225 STUB_SET_VARIABLE(virt, id)
226 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
227 STUB_RESET_SYSTEM(virt, id)
228
229 void
230 efi_gettimeofday (struct timespec *ts)
231 {
232         efi_time_t tm;
233
234         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
235                 memset(ts, 0, sizeof(*ts));
236                 return;
237         }
238
239         ts->tv_sec = mktime(tm.year, tm.month, tm.day,
240                             tm.hour, tm.minute, tm.second);
241         ts->tv_nsec = tm.nanosecond;
242 }
243
244 static int
245 is_memory_available (efi_memory_desc_t *md)
246 {
247         if (!(md->attribute & EFI_MEMORY_WB))
248                 return 0;
249
250         switch (md->type) {
251               case EFI_LOADER_CODE:
252               case EFI_LOADER_DATA:
253               case EFI_BOOT_SERVICES_CODE:
254               case EFI_BOOT_SERVICES_DATA:
255               case EFI_CONVENTIONAL_MEMORY:
256                 return 1;
257         }
258         return 0;
259 }
260
261 typedef struct kern_memdesc {
262         u64 attribute;
263         u64 start;
264         u64 num_pages;
265 } kern_memdesc_t;
266
267 static kern_memdesc_t *kern_memmap;
268
269 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
270
271 static inline u64
272 kmd_end(kern_memdesc_t *kmd)
273 {
274         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
275 }
276
277 static inline u64
278 efi_md_end(efi_memory_desc_t *md)
279 {
280         return (md->phys_addr + efi_md_size(md));
281 }
282
283 static inline int
284 efi_wb(efi_memory_desc_t *md)
285 {
286         return (md->attribute & EFI_MEMORY_WB);
287 }
288
289 static inline int
290 efi_uc(efi_memory_desc_t *md)
291 {
292         return (md->attribute & EFI_MEMORY_UC);
293 }
294
295 static void
296 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
297 {
298         kern_memdesc_t *k;
299         u64 start, end, voff;
300
301         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
302         for (k = kern_memmap; k->start != ~0UL; k++) {
303                 if (k->attribute != attr)
304                         continue;
305                 start = PAGE_ALIGN(k->start);
306                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
307                 if (start < end)
308                         if ((*callback)(start + voff, end + voff, arg) < 0)
309                                 return;
310         }
311 }
312
313 /*
314  * Walk the EFI memory map and call CALLBACK once for each EFI memory
315  * descriptor that has memory that is available for OS use.
316  */
317 void
318 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
319 {
320         walk(callback, arg, EFI_MEMORY_WB);
321 }
322
323 /*
324  * Walk the EFI memory map and call CALLBACK once for each EFI memory
325  * descriptor that has memory that is available for uncached allocator.
326  */
327 void
328 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
329 {
330         walk(callback, arg, EFI_MEMORY_UC);
331 }
332
333 /*
334  * Look for the PAL_CODE region reported by EFI and map it using an
335  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
336  * Abstraction Layer chapter 11 in ADAG
337  */
338 void *
339 efi_get_pal_addr (void)
340 {
341         void *efi_map_start, *efi_map_end, *p;
342         efi_memory_desc_t *md;
343         u64 efi_desc_size;
344         int pal_code_count = 0;
345         u64 vaddr, mask;
346
347         efi_map_start = __va(ia64_boot_param->efi_memmap);
348         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
349         efi_desc_size = ia64_boot_param->efi_memdesc_size;
350
351         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
352                 md = p;
353                 if (md->type != EFI_PAL_CODE)
354                         continue;
355
356                 if (++pal_code_count > 1) {
357                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
358                                "dropped @ %lx\n", md->phys_addr);
359                         continue;
360                 }
361                 /*
362                  * The only ITLB entry in region 7 that is used is the one
363                  * installed by __start().  That entry covers a 64MB range.
364                  */
365                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
366                 vaddr = PAGE_OFFSET + md->phys_addr;
367
368                 /*
369                  * We must check that the PAL mapping won't overlap with the
370                  * kernel mapping.
371                  *
372                  * PAL code is guaranteed to be aligned on a power of 2 between
373                  * 4k and 256KB and that only one ITR is needed to map it. This
374                  * implies that the PAL code is always aligned on its size,
375                  * i.e., the closest matching page size supported by the TLB.
376                  * Therefore PAL code is guaranteed never to cross a 64MB unless
377                  * it is bigger than 64MB (very unlikely!).  So for now the
378                  * following test is enough to determine whether or not we need
379                  * a dedicated ITR for the PAL code.
380                  */
381                 if ((vaddr & mask) == (KERNEL_START & mask)) {
382                         printk(KERN_INFO "%s: no need to install ITR for "
383                                "PAL code\n", __FUNCTION__);
384                         continue;
385                 }
386
387                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
388                         panic("Whoa!  PAL code size bigger than a granule!");
389
390 #if EFI_DEBUG
391                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
392
393                 printk(KERN_INFO "CPU %d: mapping PAL code "
394                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
395                        smp_processor_id(), md->phys_addr,
396                        md->phys_addr + efi_md_size(md),
397                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
398 #endif
399                 return __va(md->phys_addr);
400         }
401         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
402                __FUNCTION__);
403         return NULL;
404 }
405
406 void
407 efi_map_pal_code (void)
408 {
409         void *pal_vaddr = efi_get_pal_addr ();
410         u64 psr;
411
412         if (!pal_vaddr)
413                 return;
414
415         /*
416          * Cannot write to CRx with PSR.ic=1
417          */
418         psr = ia64_clear_ic();
419         ia64_itr(0x1, IA64_TR_PALCODE,
420                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
421                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
422                  IA64_GRANULE_SHIFT);
423         ia64_set_psr(psr);              /* restore psr */
424         ia64_srlz_i();
425 }
426
427 void __init
428 efi_init (void)
429 {
430         void *efi_map_start, *efi_map_end;
431         efi_config_table_t *config_tables;
432         efi_char16_t *c16;
433         u64 efi_desc_size;
434         char *cp, vendor[100] = "unknown";
435         int i;
436
437         /*
438          * It's too early to be able to use the standard kernel command line
439          * support...
440          */
441         for (cp = boot_command_line; *cp; ) {
442                 if (memcmp(cp, "mem=", 4) == 0) {
443                         mem_limit = memparse(cp + 4, &cp);
444                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
445                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
446                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
447                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
448                 } else {
449                         while (*cp != ' ' && *cp)
450                                 ++cp;
451                         while (*cp == ' ')
452                                 ++cp;
453                 }
454         }
455         if (min_addr != 0UL)
456                 printk(KERN_INFO "Ignoring memory below %luMB\n",
457                        min_addr >> 20);
458         if (max_addr != ~0UL)
459                 printk(KERN_INFO "Ignoring memory above %luMB\n",
460                        max_addr >> 20);
461
462         efi.systab = __va(ia64_boot_param->efi_systab);
463
464         /*
465          * Verify the EFI Table
466          */
467         if (efi.systab == NULL)
468                 panic("Whoa! Can't find EFI system table.\n");
469         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
470                 panic("Whoa! EFI system table signature incorrect\n");
471         if ((efi.systab->hdr.revision >> 16) == 0)
472                 printk(KERN_WARNING "Warning: EFI system table version "
473                        "%d.%02d, expected 1.00 or greater\n",
474                        efi.systab->hdr.revision >> 16,
475                        efi.systab->hdr.revision & 0xffff);
476
477         config_tables = __va(efi.systab->tables);
478
479         /* Show what we know for posterity */
480         c16 = __va(efi.systab->fw_vendor);
481         if (c16) {
482                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
483                         vendor[i] = *c16++;
484                 vendor[i] = '\0';
485         }
486
487         printk(KERN_INFO "EFI v%u.%.02u by %s:",
488                efi.systab->hdr.revision >> 16,
489                efi.systab->hdr.revision & 0xffff, vendor);
490
491         efi.mps        = EFI_INVALID_TABLE_ADDR;
492         efi.acpi       = EFI_INVALID_TABLE_ADDR;
493         efi.acpi20     = EFI_INVALID_TABLE_ADDR;
494         efi.smbios     = EFI_INVALID_TABLE_ADDR;
495         efi.sal_systab = EFI_INVALID_TABLE_ADDR;
496         efi.boot_info  = EFI_INVALID_TABLE_ADDR;
497         efi.hcdp       = EFI_INVALID_TABLE_ADDR;
498         efi.uga        = EFI_INVALID_TABLE_ADDR;
499
500         for (i = 0; i < (int) efi.systab->nr_tables; i++) {
501                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
502                         efi.mps = config_tables[i].table;
503                         printk(" MPS=0x%lx", config_tables[i].table);
504                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
505                         efi.acpi20 = config_tables[i].table;
506                         printk(" ACPI 2.0=0x%lx", config_tables[i].table);
507                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
508                         efi.acpi = config_tables[i].table;
509                         printk(" ACPI=0x%lx", config_tables[i].table);
510                 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
511                         efi.smbios = config_tables[i].table;
512                         printk(" SMBIOS=0x%lx", config_tables[i].table);
513                 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
514                         efi.sal_systab = config_tables[i].table;
515                         printk(" SALsystab=0x%lx", config_tables[i].table);
516                 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
517                         efi.hcdp = config_tables[i].table;
518                         printk(" HCDP=0x%lx", config_tables[i].table);
519                 }
520         }
521         printk("\n");
522
523         runtime = __va(efi.systab->runtime);
524         efi.get_time = phys_get_time;
525         efi.set_time = phys_set_time;
526         efi.get_wakeup_time = phys_get_wakeup_time;
527         efi.set_wakeup_time = phys_set_wakeup_time;
528         efi.get_variable = phys_get_variable;
529         efi.get_next_variable = phys_get_next_variable;
530         efi.set_variable = phys_set_variable;
531         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
532         efi.reset_system = phys_reset_system;
533
534         efi_map_start = __va(ia64_boot_param->efi_memmap);
535         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
536         efi_desc_size = ia64_boot_param->efi_memdesc_size;
537
538 #if EFI_DEBUG
539         /* print EFI memory map: */
540         {
541                 efi_memory_desc_t *md;
542                 void *p;
543
544                 for (i = 0, p = efi_map_start; p < efi_map_end;
545                      ++i, p += efi_desc_size)
546                 {
547                         md = p;
548                         printk("mem%02u: type=%u, attr=0x%lx, "
549                                "range=[0x%016lx-0x%016lx) (%luMB)\n",
550                                i, md->type, md->attribute, md->phys_addr,
551                                md->phys_addr + efi_md_size(md),
552                                md->num_pages >> (20 - EFI_PAGE_SHIFT));
553                 }
554         }
555 #endif
556
557         efi_map_pal_code();
558         efi_enter_virtual_mode();
559 }
560
561 void
562 efi_enter_virtual_mode (void)
563 {
564         void *efi_map_start, *efi_map_end, *p;
565         efi_memory_desc_t *md;
566         efi_status_t status;
567         u64 efi_desc_size;
568
569         efi_map_start = __va(ia64_boot_param->efi_memmap);
570         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
571         efi_desc_size = ia64_boot_param->efi_memdesc_size;
572
573         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
574                 md = p;
575                 if (md->attribute & EFI_MEMORY_RUNTIME) {
576                         /*
577                          * Some descriptors have multiple bits set, so the
578                          * order of the tests is relevant.
579                          */
580                         if (md->attribute & EFI_MEMORY_WB) {
581                                 md->virt_addr = (u64) __va(md->phys_addr);
582                         } else if (md->attribute & EFI_MEMORY_UC) {
583                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
584                         } else if (md->attribute & EFI_MEMORY_WC) {
585 #if 0
586                                 md->virt_addr = ia64_remap(md->phys_addr,
587                                                            (_PAGE_A |
588                                                             _PAGE_P |
589                                                             _PAGE_D |
590                                                             _PAGE_MA_WC |
591                                                             _PAGE_PL_0 |
592                                                             _PAGE_AR_RW));
593 #else
594                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
595                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
596 #endif
597                         } else if (md->attribute & EFI_MEMORY_WT) {
598 #if 0
599                                 md->virt_addr = ia64_remap(md->phys_addr,
600                                                            (_PAGE_A |
601                                                             _PAGE_P |
602                                                             _PAGE_D |
603                                                             _PAGE_MA_WT |
604                                                             _PAGE_PL_0 |
605                                                             _PAGE_AR_RW));
606 #else
607                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
608                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
609 #endif
610                         }
611                 }
612         }
613
614         status = efi_call_phys(__va(runtime->set_virtual_address_map),
615                                ia64_boot_param->efi_memmap_size,
616                                efi_desc_size,
617                                ia64_boot_param->efi_memdesc_version,
618                                ia64_boot_param->efi_memmap);
619         if (status != EFI_SUCCESS) {
620                 printk(KERN_WARNING "warning: unable to switch EFI into "
621                        "virtual mode (status=%lu)\n", status);
622                 return;
623         }
624
625         /*
626          * Now that EFI is in virtual mode, we call the EFI functions more
627          * efficiently:
628          */
629         efi.get_time = virt_get_time;
630         efi.set_time = virt_set_time;
631         efi.get_wakeup_time = virt_get_wakeup_time;
632         efi.set_wakeup_time = virt_set_wakeup_time;
633         efi.get_variable = virt_get_variable;
634         efi.get_next_variable = virt_get_next_variable;
635         efi.set_variable = virt_set_variable;
636         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
637         efi.reset_system = virt_reset_system;
638 }
639
640 /*
641  * Walk the EFI memory map looking for the I/O port range.  There can only be
642  * one entry of this type, other I/O port ranges should be described via ACPI.
643  */
644 u64
645 efi_get_iobase (void)
646 {
647         void *efi_map_start, *efi_map_end, *p;
648         efi_memory_desc_t *md;
649         u64 efi_desc_size;
650
651         efi_map_start = __va(ia64_boot_param->efi_memmap);
652         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
653         efi_desc_size = ia64_boot_param->efi_memdesc_size;
654
655         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
656                 md = p;
657                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
658                         if (md->attribute & EFI_MEMORY_UC)
659                                 return md->phys_addr;
660                 }
661         }
662         return 0;
663 }
664
665 static struct kern_memdesc *
666 kern_memory_descriptor (unsigned long phys_addr)
667 {
668         struct kern_memdesc *md;
669
670         for (md = kern_memmap; md->start != ~0UL; md++) {
671                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
672                          return md;
673         }
674         return NULL;
675 }
676
677 static efi_memory_desc_t *
678 efi_memory_descriptor (unsigned long phys_addr)
679 {
680         void *efi_map_start, *efi_map_end, *p;
681         efi_memory_desc_t *md;
682         u64 efi_desc_size;
683
684         efi_map_start = __va(ia64_boot_param->efi_memmap);
685         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
686         efi_desc_size = ia64_boot_param->efi_memdesc_size;
687
688         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
689                 md = p;
690
691                 if (phys_addr - md->phys_addr < efi_md_size(md))
692                          return md;
693         }
694         return NULL;
695 }
696
697 static int
698 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
699 {
700         void *efi_map_start, *efi_map_end, *p;
701         efi_memory_desc_t *md;
702         u64 efi_desc_size;
703         unsigned long end;
704
705         efi_map_start = __va(ia64_boot_param->efi_memmap);
706         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
707         efi_desc_size = ia64_boot_param->efi_memdesc_size;
708
709         end = phys_addr + size;
710
711         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
712                 md = p;
713                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
714                         return 1;
715         }
716         return 0;
717 }
718
719 u32
720 efi_mem_type (unsigned long phys_addr)
721 {
722         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
723
724         if (md)
725                 return md->type;
726         return 0;
727 }
728
729 u64
730 efi_mem_attributes (unsigned long phys_addr)
731 {
732         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
733
734         if (md)
735                 return md->attribute;
736         return 0;
737 }
738 EXPORT_SYMBOL(efi_mem_attributes);
739
740 u64
741 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
742 {
743         unsigned long end = phys_addr + size;
744         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
745         u64 attr;
746
747         if (!md)
748                 return 0;
749
750         /*
751          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
752          * the kernel that firmware needs this region mapped.
753          */
754         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
755         do {
756                 unsigned long md_end = efi_md_end(md);
757
758                 if (end <= md_end)
759                         return attr;
760
761                 md = efi_memory_descriptor(md_end);
762                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
763                         return 0;
764         } while (md);
765         return 0;       /* never reached */
766 }
767
768 u64
769 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
770 {
771         unsigned long end = phys_addr + size;
772         struct kern_memdesc *md;
773         u64 attr;
774
775         /*
776          * This is a hack for ioremap calls before we set up kern_memmap.
777          * Maybe we should do efi_memmap_init() earlier instead.
778          */
779         if (!kern_memmap) {
780                 attr = efi_mem_attribute(phys_addr, size);
781                 if (attr & EFI_MEMORY_WB)
782                         return EFI_MEMORY_WB;
783                 return 0;
784         }
785
786         md = kern_memory_descriptor(phys_addr);
787         if (!md)
788                 return 0;
789
790         attr = md->attribute;
791         do {
792                 unsigned long md_end = kmd_end(md);
793
794                 if (end <= md_end)
795                         return attr;
796
797                 md = kern_memory_descriptor(md_end);
798                 if (!md || md->attribute != attr)
799                         return 0;
800         } while (md);
801         return 0;       /* never reached */
802 }
803 EXPORT_SYMBOL(kern_mem_attribute);
804
805 int
806 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
807 {
808         u64 attr;
809
810         /*
811          * /dev/mem reads and writes use copy_to_user(), which implicitly
812          * uses a granule-sized kernel identity mapping.  It's really
813          * only safe to do this for regions in kern_memmap.  For more
814          * details, see Documentation/ia64/aliasing.txt.
815          */
816         attr = kern_mem_attribute(phys_addr, size);
817         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
818                 return 1;
819         return 0;
820 }
821
822 int
823 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
824 {
825         unsigned long phys_addr = pfn << PAGE_SHIFT;
826         u64 attr;
827
828         attr = efi_mem_attribute(phys_addr, size);
829
830         /*
831          * /dev/mem mmap uses normal user pages, so we don't need the entire
832          * granule, but the entire region we're mapping must support the same
833          * attribute.
834          */
835         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
836                 return 1;
837
838         /*
839          * Intel firmware doesn't tell us about all the MMIO regions, so
840          * in general we have to allow mmap requests.  But if EFI *does*
841          * tell us about anything inside this region, we should deny it.
842          * The user can always map a smaller region to avoid the overlap.
843          */
844         if (efi_memmap_intersects(phys_addr, size))
845                 return 0;
846
847         return 1;
848 }
849
850 pgprot_t
851 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
852                      pgprot_t vma_prot)
853 {
854         unsigned long phys_addr = pfn << PAGE_SHIFT;
855         u64 attr;
856
857         /*
858          * For /dev/mem mmap, we use user mappings, but if the region is
859          * in kern_memmap (and hence may be covered by a kernel mapping),
860          * we must use the same attribute as the kernel mapping.
861          */
862         attr = kern_mem_attribute(phys_addr, size);
863         if (attr & EFI_MEMORY_WB)
864                 return pgprot_cacheable(vma_prot);
865         else if (attr & EFI_MEMORY_UC)
866                 return pgprot_noncached(vma_prot);
867
868         /*
869          * Some chipsets don't support UC access to memory.  If
870          * WB is supported, we prefer that.
871          */
872         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
873                 return pgprot_cacheable(vma_prot);
874
875         return pgprot_noncached(vma_prot);
876 }
877
878 int __init
879 efi_uart_console_only(void)
880 {
881         efi_status_t status;
882         char *s, name[] = "ConOut";
883         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
884         efi_char16_t *utf16, name_utf16[32];
885         unsigned char data[1024];
886         unsigned long size = sizeof(data);
887         struct efi_generic_dev_path *hdr, *end_addr;
888         int uart = 0;
889
890         /* Convert to UTF-16 */
891         utf16 = name_utf16;
892         s = name;
893         while (*s)
894                 *utf16++ = *s++ & 0x7f;
895         *utf16 = 0;
896
897         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
898         if (status != EFI_SUCCESS) {
899                 printk(KERN_ERR "No EFI %s variable?\n", name);
900                 return 0;
901         }
902
903         hdr = (struct efi_generic_dev_path *) data;
904         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
905         while (hdr < end_addr) {
906                 if (hdr->type == EFI_DEV_MSG &&
907                     hdr->sub_type == EFI_DEV_MSG_UART)
908                         uart = 1;
909                 else if (hdr->type == EFI_DEV_END_PATH ||
910                           hdr->type == EFI_DEV_END_PATH2) {
911                         if (!uart)
912                                 return 0;
913                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
914                                 return 1;
915                         uart = 0;
916                 }
917                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
918         }
919         printk(KERN_ERR "Malformed %s value\n", name);
920         return 0;
921 }
922
923 /*
924  * Look for the first granule aligned memory descriptor memory
925  * that is big enough to hold EFI memory map. Make sure this
926  * descriptor is atleast granule sized so it does not get trimmed
927  */
928 struct kern_memdesc *
929 find_memmap_space (void)
930 {
931         u64     contig_low=0, contig_high=0;
932         u64     as = 0, ae;
933         void *efi_map_start, *efi_map_end, *p, *q;
934         efi_memory_desc_t *md, *pmd = NULL, *check_md;
935         u64     space_needed, efi_desc_size;
936         unsigned long total_mem = 0;
937
938         efi_map_start = __va(ia64_boot_param->efi_memmap);
939         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
940         efi_desc_size = ia64_boot_param->efi_memdesc_size;
941
942         /*
943          * Worst case: we need 3 kernel descriptors for each efi descriptor
944          * (if every entry has a WB part in the middle, and UC head and tail),
945          * plus one for the end marker.
946          */
947         space_needed = sizeof(kern_memdesc_t) *
948                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
949
950         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
951                 md = p;
952                 if (!efi_wb(md)) {
953                         continue;
954                 }
955                 if (pmd == NULL || !efi_wb(pmd) ||
956                     efi_md_end(pmd) != md->phys_addr) {
957                         contig_low = GRANULEROUNDUP(md->phys_addr);
958                         contig_high = efi_md_end(md);
959                         for (q = p + efi_desc_size; q < efi_map_end;
960                              q += efi_desc_size) {
961                                 check_md = q;
962                                 if (!efi_wb(check_md))
963                                         break;
964                                 if (contig_high != check_md->phys_addr)
965                                         break;
966                                 contig_high = efi_md_end(check_md);
967                         }
968                         contig_high = GRANULEROUNDDOWN(contig_high);
969                 }
970                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
971                         continue;
972
973                 /* Round ends inward to granule boundaries */
974                 as = max(contig_low, md->phys_addr);
975                 ae = min(contig_high, efi_md_end(md));
976
977                 /* keep within max_addr= and min_addr= command line arg */
978                 as = max(as, min_addr);
979                 ae = min(ae, max_addr);
980                 if (ae <= as)
981                         continue;
982
983                 /* avoid going over mem= command line arg */
984                 if (total_mem + (ae - as) > mem_limit)
985                         ae -= total_mem + (ae - as) - mem_limit;
986
987                 if (ae <= as)
988                         continue;
989
990                 if (ae - as > space_needed)
991                         break;
992         }
993         if (p >= efi_map_end)
994                 panic("Can't allocate space for kernel memory descriptors");
995
996         return __va(as);
997 }
998
999 /*
1000  * Walk the EFI memory map and gather all memory available for kernel
1001  * to use.  We can allocate partial granules only if the unavailable
1002  * parts exist, and are WB.
1003  */
1004 unsigned long
1005 efi_memmap_init(unsigned long *s, unsigned long *e)
1006 {
1007         struct kern_memdesc *k, *prev = NULL;
1008         u64     contig_low=0, contig_high=0;
1009         u64     as, ae, lim;
1010         void *efi_map_start, *efi_map_end, *p, *q;
1011         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1012         u64     efi_desc_size;
1013         unsigned long total_mem = 0;
1014
1015         k = kern_memmap = find_memmap_space();
1016
1017         efi_map_start = __va(ia64_boot_param->efi_memmap);
1018         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1019         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1020
1021         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1022                 md = p;
1023                 if (!efi_wb(md)) {
1024                         if (efi_uc(md) &&
1025                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1026                              md->type == EFI_BOOT_SERVICES_DATA)) {
1027                                 k->attribute = EFI_MEMORY_UC;
1028                                 k->start = md->phys_addr;
1029                                 k->num_pages = md->num_pages;
1030                                 k++;
1031                         }
1032                         continue;
1033                 }
1034                 if (pmd == NULL || !efi_wb(pmd) ||
1035                     efi_md_end(pmd) != md->phys_addr) {
1036                         contig_low = GRANULEROUNDUP(md->phys_addr);
1037                         contig_high = efi_md_end(md);
1038                         for (q = p + efi_desc_size; q < efi_map_end;
1039                              q += efi_desc_size) {
1040                                 check_md = q;
1041                                 if (!efi_wb(check_md))
1042                                         break;
1043                                 if (contig_high != check_md->phys_addr)
1044                                         break;
1045                                 contig_high = efi_md_end(check_md);
1046                         }
1047                         contig_high = GRANULEROUNDDOWN(contig_high);
1048                 }
1049                 if (!is_memory_available(md))
1050                         continue;
1051
1052 #ifdef CONFIG_CRASH_DUMP
1053                 /* saved_max_pfn should ignore max_addr= command line arg */
1054                 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1055                         saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1056 #endif
1057                 /*
1058                  * Round ends inward to granule boundaries
1059                  * Give trimmings to uncached allocator
1060                  */
1061                 if (md->phys_addr < contig_low) {
1062                         lim = min(efi_md_end(md), contig_low);
1063                         if (efi_uc(md)) {
1064                                 if (k > kern_memmap &&
1065                                     (k-1)->attribute == EFI_MEMORY_UC &&
1066                                     kmd_end(k-1) == md->phys_addr) {
1067                                         (k-1)->num_pages +=
1068                                                 (lim - md->phys_addr)
1069                                                 >> EFI_PAGE_SHIFT;
1070                                 } else {
1071                                         k->attribute = EFI_MEMORY_UC;
1072                                         k->start = md->phys_addr;
1073                                         k->num_pages = (lim - md->phys_addr)
1074                                                 >> EFI_PAGE_SHIFT;
1075                                         k++;
1076                                 }
1077                         }
1078                         as = contig_low;
1079                 } else
1080                         as = md->phys_addr;
1081
1082                 if (efi_md_end(md) > contig_high) {
1083                         lim = max(md->phys_addr, contig_high);
1084                         if (efi_uc(md)) {
1085                                 if (lim == md->phys_addr && k > kern_memmap &&
1086                                     (k-1)->attribute == EFI_MEMORY_UC &&
1087                                     kmd_end(k-1) == md->phys_addr) {
1088                                         (k-1)->num_pages += md->num_pages;
1089                                 } else {
1090                                         k->attribute = EFI_MEMORY_UC;
1091                                         k->start = lim;
1092                                         k->num_pages = (efi_md_end(md) - lim)
1093                                                 >> EFI_PAGE_SHIFT;
1094                                         k++;
1095                                 }
1096                         }
1097                         ae = contig_high;
1098                 } else
1099                         ae = efi_md_end(md);
1100
1101                 /* keep within max_addr= and min_addr= command line arg */
1102                 as = max(as, min_addr);
1103                 ae = min(ae, max_addr);
1104                 if (ae <= as)
1105                         continue;
1106
1107                 /* avoid going over mem= command line arg */
1108                 if (total_mem + (ae - as) > mem_limit)
1109                         ae -= total_mem + (ae - as) - mem_limit;
1110
1111                 if (ae <= as)
1112                         continue;
1113                 if (prev && kmd_end(prev) == md->phys_addr) {
1114                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1115                         total_mem += ae - as;
1116                         continue;
1117                 }
1118                 k->attribute = EFI_MEMORY_WB;
1119                 k->start = as;
1120                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1121                 total_mem += ae - as;
1122                 prev = k++;
1123         }
1124         k->start = ~0L; /* end-marker */
1125
1126         /* reserve the memory we are using for kern_memmap */
1127         *s = (u64)kern_memmap;
1128         *e = (u64)++k;
1129
1130         return total_mem;
1131 }
1132
1133 void
1134 efi_initialize_iomem_resources(struct resource *code_resource,
1135                                struct resource *data_resource,
1136                                struct resource *bss_resource)
1137 {
1138         struct resource *res;
1139         void *efi_map_start, *efi_map_end, *p;
1140         efi_memory_desc_t *md;
1141         u64 efi_desc_size;
1142         char *name;
1143         unsigned long flags;
1144
1145         efi_map_start = __va(ia64_boot_param->efi_memmap);
1146         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1147         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1148
1149         res = NULL;
1150
1151         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1152                 md = p;
1153
1154                 if (md->num_pages == 0) /* should not happen */
1155                         continue;
1156
1157                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1158                 switch (md->type) {
1159
1160                         case EFI_MEMORY_MAPPED_IO:
1161                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1162                                 continue;
1163
1164                         case EFI_LOADER_CODE:
1165                         case EFI_LOADER_DATA:
1166                         case EFI_BOOT_SERVICES_DATA:
1167                         case EFI_BOOT_SERVICES_CODE:
1168                         case EFI_CONVENTIONAL_MEMORY:
1169                                 if (md->attribute & EFI_MEMORY_WP) {
1170                                         name = "System ROM";
1171                                         flags |= IORESOURCE_READONLY;
1172                                 } else {
1173                                         name = "System RAM";
1174                                 }
1175                                 break;
1176
1177                         case EFI_ACPI_MEMORY_NVS:
1178                                 name = "ACPI Non-volatile Storage";
1179                                 break;
1180
1181                         case EFI_UNUSABLE_MEMORY:
1182                                 name = "reserved";
1183                                 flags |= IORESOURCE_DISABLED;
1184                                 break;
1185
1186                         case EFI_RESERVED_TYPE:
1187                         case EFI_RUNTIME_SERVICES_CODE:
1188                         case EFI_RUNTIME_SERVICES_DATA:
1189                         case EFI_ACPI_RECLAIM_MEMORY:
1190                         default:
1191                                 name = "reserved";
1192                                 break;
1193                 }
1194
1195                 if ((res = kzalloc(sizeof(struct resource),
1196                                    GFP_KERNEL)) == NULL) {
1197                         printk(KERN_ERR
1198                                "failed to allocate resource for iomem\n");
1199                         return;
1200                 }
1201
1202                 res->name = name;
1203                 res->start = md->phys_addr;
1204                 res->end = md->phys_addr + efi_md_size(md) - 1;
1205                 res->flags = flags;
1206
1207                 if (insert_resource(&iomem_resource, res) < 0)
1208                         kfree(res);
1209                 else {
1210                         /*
1211                          * We don't know which region contains
1212                          * kernel data so we try it repeatedly and
1213                          * let the resource manager test it.
1214                          */
1215                         insert_resource(res, code_resource);
1216                         insert_resource(res, data_resource);
1217                         insert_resource(res, bss_resource);
1218 #ifdef CONFIG_KEXEC
1219                         insert_resource(res, &efi_memmap_res);
1220                         insert_resource(res, &boot_param_res);
1221                         if (crashk_res.end > crashk_res.start)
1222                                 insert_resource(res, &crashk_res);
1223 #endif
1224                 }
1225         }
1226 }
1227
1228 #ifdef CONFIG_KEXEC
1229 /* find a block of memory aligned to 64M exclude reserved regions
1230    rsvd_regions are sorted
1231  */
1232 unsigned long __init
1233 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1234 {
1235         int i;
1236         u64 start, end;
1237         u64 alignment = 1UL << _PAGE_SIZE_64M;
1238         void *efi_map_start, *efi_map_end, *p;
1239         efi_memory_desc_t *md;
1240         u64 efi_desc_size;
1241
1242         efi_map_start = __va(ia64_boot_param->efi_memmap);
1243         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1244         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1245
1246         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1247                 md = p;
1248                 if (!efi_wb(md))
1249                         continue;
1250                 start = ALIGN(md->phys_addr, alignment);
1251                 end = efi_md_end(md);
1252                 for (i = 0; i < n; i++) {
1253                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1254                                 if (__pa(r[i].start) > start + size)
1255                                         return start;
1256                                 start = ALIGN(__pa(r[i].end), alignment);
1257                                 if (i < n-1 &&
1258                                     __pa(r[i+1].start) < start + size)
1259                                         continue;
1260                                 else
1261                                         break;
1262                         }
1263                 }
1264                 if (end > start + size)
1265                         return start;
1266         }
1267
1268         printk(KERN_WARNING
1269                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1270         return ~0UL;
1271 }
1272 #endif
1273
1274 #ifdef CONFIG_PROC_VMCORE
1275 /* locate the size find a the descriptor at a certain address */
1276 unsigned long __init
1277 vmcore_find_descriptor_size (unsigned long address)
1278 {
1279         void *efi_map_start, *efi_map_end, *p;
1280         efi_memory_desc_t *md;
1281         u64 efi_desc_size;
1282         unsigned long ret = 0;
1283
1284         efi_map_start = __va(ia64_boot_param->efi_memmap);
1285         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1286         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1287
1288         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1289                 md = p;
1290                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1291                     && md->phys_addr == address) {
1292                         ret = efi_md_size(md);
1293                         break;
1294                 }
1295         }
1296
1297         if (ret == 0)
1298                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1299
1300         return ret;
1301 }
1302 #endif