]> err.no Git - linux-2.6/blob - arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
[CPUFREQ][8/8] acpi-cpufreq: Add support for freq feedback from hardware
[linux-2.6] / arch / i386 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/sched.h>        /* current */
36 #include <linux/dmi.h>
37
38 #include <linux/acpi.h>
39 #include <acpi/processor.h>
40
41 #include <asm/io.h>
42 #include <asm/msr.h>
43 #include <asm/processor.h>
44 #include <asm/cpufeature.h>
45 #include <asm/delay.h>
46 #include <asm/uaccess.h>
47
48 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
49
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53
54 enum {
55         UNDEFINED_CAPABLE = 0,
56         SYSTEM_INTEL_MSR_CAPABLE,
57         SYSTEM_IO_CAPABLE,
58 };
59
60 #define INTEL_MSR_RANGE         (0xffff)
61 #define CPUID_6_ECX_APERFMPERF_CAPABILITY       (0x1)
62
63 struct acpi_cpufreq_data {
64         struct acpi_processor_performance *acpi_data;
65         struct cpufreq_frequency_table *freq_table;
66         unsigned int max_freq;
67         unsigned int resume;
68         unsigned int cpu_feature;
69 };
70
71 static struct acpi_cpufreq_data *drv_data[NR_CPUS];
72 static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
73
74 static struct cpufreq_driver acpi_cpufreq_driver;
75
76 static unsigned int acpi_pstate_strict;
77
78 static int check_est_cpu(unsigned int cpuid)
79 {
80         struct cpuinfo_x86 *cpu = &cpu_data[cpuid];
81
82         if (cpu->x86_vendor != X86_VENDOR_INTEL ||
83             !cpu_has(cpu, X86_FEATURE_EST))
84                 return 0;
85
86         return 1;
87 }
88
89 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
90 {
91         struct acpi_processor_performance *perf;
92         int i;
93
94         perf = data->acpi_data;
95
96         for (i = 0; i < perf->state_count; i++) {
97                 if (value == perf->states[i].status)
98                         return data->freq_table[i].frequency;
99         }
100         return 0;
101 }
102
103 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
104 {
105         int i;
106         struct acpi_processor_performance *perf;
107
108         msr &= INTEL_MSR_RANGE;
109         perf = data->acpi_data;
110
111         for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
112                 if (msr == perf->states[data->freq_table[i].index].status)
113                         return data->freq_table[i].frequency;
114         }
115         return data->freq_table[0].frequency;
116 }
117
118 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
119 {
120         switch (data->cpu_feature) {
121         case SYSTEM_INTEL_MSR_CAPABLE:
122                 return extract_msr(val, data);
123         case SYSTEM_IO_CAPABLE:
124                 return extract_io(val, data);
125         default:
126                 return 0;
127         }
128 }
129
130 static void wrport(u16 port, u8 bit_width, u32 value)
131 {
132         if (bit_width <= 8) {
133                 outb(value, port);
134         } else if (bit_width <= 16) {
135                 outw(value, port);
136         } else if (bit_width <= 32) {
137                 outl(value, port);
138         }
139 }
140
141 static void rdport(u16 port, u8 bit_width, u32 * ret)
142 {
143         *ret = 0;
144         if (bit_width <= 8) {
145                 *ret = inb(port);
146         } else if (bit_width <= 16) {
147                 *ret = inw(port);
148         } else if (bit_width <= 32) {
149                 *ret = inl(port);
150         }
151 }
152
153 struct msr_addr {
154         u32 reg;
155 };
156
157 struct io_addr {
158         u16 port;
159         u8 bit_width;
160 };
161
162 typedef union {
163         struct msr_addr msr;
164         struct io_addr io;
165 } drv_addr_union;
166
167 struct drv_cmd {
168         unsigned int type;
169         cpumask_t mask;
170         drv_addr_union addr;
171         u32 val;
172 };
173
174 static void do_drv_read(struct drv_cmd *cmd)
175 {
176         u32 h;
177
178         switch (cmd->type) {
179         case SYSTEM_INTEL_MSR_CAPABLE:
180                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
181                 break;
182         case SYSTEM_IO_CAPABLE:
183                 rdport(cmd->addr.io.port, cmd->addr.io.bit_width, &cmd->val);
184                 break;
185         default:
186                 break;
187         }
188 }
189
190 static void do_drv_write(struct drv_cmd *cmd)
191 {
192         u32 h = 0;
193
194         switch (cmd->type) {
195         case SYSTEM_INTEL_MSR_CAPABLE:
196                 wrmsr(cmd->addr.msr.reg, cmd->val, h);
197                 break;
198         case SYSTEM_IO_CAPABLE:
199                 wrport(cmd->addr.io.port, cmd->addr.io.bit_width, cmd->val);
200                 break;
201         default:
202                 break;
203         }
204 }
205
206 static inline void drv_read(struct drv_cmd *cmd)
207 {
208         cpumask_t saved_mask = current->cpus_allowed;
209         cmd->val = 0;
210
211         set_cpus_allowed(current, cmd->mask);
212         do_drv_read(cmd);
213         set_cpus_allowed(current, saved_mask);
214
215 }
216
217 static void drv_write(struct drv_cmd *cmd)
218 {
219         cpumask_t saved_mask = current->cpus_allowed;
220         unsigned int i;
221
222         for_each_cpu_mask(i, cmd->mask) {
223                 set_cpus_allowed(current, cpumask_of_cpu(i));
224                 do_drv_write(cmd);
225         }
226
227         set_cpus_allowed(current, saved_mask);
228         return;
229 }
230
231 static u32 get_cur_val(cpumask_t mask)
232 {
233         struct acpi_processor_performance *perf;
234         struct drv_cmd cmd;
235
236         if (unlikely(cpus_empty(mask)))
237                 return 0;
238
239         switch (drv_data[first_cpu(mask)]->cpu_feature) {
240         case SYSTEM_INTEL_MSR_CAPABLE:
241                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
242                 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
243                 break;
244         case SYSTEM_IO_CAPABLE:
245                 cmd.type = SYSTEM_IO_CAPABLE;
246                 perf = drv_data[first_cpu(mask)]->acpi_data;
247                 cmd.addr.io.port = perf->control_register.address;
248                 cmd.addr.io.bit_width = perf->control_register.bit_width;
249                 break;
250         default:
251                 return 0;
252         }
253
254         cmd.mask = mask;
255
256         drv_read(&cmd);
257
258         dprintk("get_cur_val = %u\n", cmd.val);
259
260         return cmd.val;
261 }
262
263 /*
264  * Return the measured active (C0) frequency on this CPU since last call
265  * to this function.
266  * Input: cpu number
267  * Return: Average CPU frequency in terms of max frequency (zero on error)
268  *
269  * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
270  * over a period of time, while CPU is in C0 state.
271  * IA32_MPERF counts at the rate of max advertised frequency
272  * IA32_APERF counts at the rate of actual CPU frequency
273  * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
274  * no meaning should be associated with absolute values of these MSRs.
275  */
276 static unsigned int get_measured_perf(unsigned int cpu)
277 {
278         union {
279                 struct {
280                         u32 lo;
281                         u32 hi;
282                 } split;
283                 u64 whole;
284         } aperf_cur, mperf_cur;
285
286         cpumask_t saved_mask;
287         unsigned int perf_percent;
288         unsigned int retval;
289
290         saved_mask = current->cpus_allowed;
291         set_cpus_allowed(current, cpumask_of_cpu(cpu));
292         if (get_cpu() != cpu) {
293                 /* We were not able to run on requested processor */
294                 put_cpu();
295                 return 0;
296         }
297
298         rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
299         rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
300
301         wrmsr(MSR_IA32_APERF, 0,0);
302         wrmsr(MSR_IA32_MPERF, 0,0);
303
304 #ifdef __i386__
305         /*
306          * We dont want to do 64 bit divide with 32 bit kernel
307          * Get an approximate value. Return failure in case we cannot get
308          * an approximate value.
309          */
310         if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
311                 int shift_count;
312                 u32 h;
313
314                 h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
315                 shift_count = fls(h);
316
317                 aperf_cur.whole >>= shift_count;
318                 mperf_cur.whole >>= shift_count;
319         }
320
321         if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
322                 int shift_count = 7;
323                 aperf_cur.split.lo >>= shift_count;
324                 mperf_cur.split.lo >>= shift_count;
325         }
326
327         if (aperf_cur.split.lo && mperf_cur.split.lo) {
328                 perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
329         } else {
330                 perf_percent = 0;
331         }
332
333 #else
334         if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
335                 int shift_count = 7;
336                 aperf_cur.whole >>= shift_count;
337                 mperf_cur.whole >>= shift_count;
338         }
339
340         if (aperf_cur.whole && mperf_cur.whole) {
341                 perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
342         } else {
343                 perf_percent = 0;
344         }
345
346 #endif
347
348         retval = drv_data[cpu]->max_freq * perf_percent / 100;
349
350         put_cpu();
351         set_cpus_allowed(current, saved_mask);
352
353         dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
354         return retval;
355 }
356
357 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
358 {
359         struct acpi_cpufreq_data *data = drv_data[cpu];
360         unsigned int freq;
361
362         dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
363
364         if (unlikely(data == NULL ||
365                      data->acpi_data == NULL || data->freq_table == NULL)) {
366                 return 0;
367         }
368
369         freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
370         dprintk("cur freq = %u\n", freq);
371
372         return freq;
373 }
374
375 static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
376                                 struct acpi_cpufreq_data *data)
377 {
378         unsigned int cur_freq;
379         unsigned int i;
380
381         for (i = 0; i < 100; i++) {
382                 cur_freq = extract_freq(get_cur_val(mask), data);
383                 if (cur_freq == freq)
384                         return 1;
385                 udelay(10);
386         }
387         return 0;
388 }
389
390 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
391                                unsigned int target_freq, unsigned int relation)
392 {
393         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
394         struct acpi_processor_performance *perf;
395         struct cpufreq_freqs freqs;
396         cpumask_t online_policy_cpus;
397         struct drv_cmd cmd;
398         unsigned int msr;
399         unsigned int next_state = 0;
400         unsigned int next_perf_state = 0;
401         unsigned int i;
402         int result = 0;
403
404         dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
405
406         if (unlikely(data == NULL ||
407                      data->acpi_data == NULL || data->freq_table == NULL)) {
408                 return -ENODEV;
409         }
410
411         perf = data->acpi_data;
412         result = cpufreq_frequency_table_target(policy,
413                                                 data->freq_table,
414                                                 target_freq,
415                                                 relation, &next_state);
416         if (unlikely(result))
417                 return -ENODEV;
418
419 #ifdef CONFIG_HOTPLUG_CPU
420         /* cpufreq holds the hotplug lock, so we are safe from here on */
421         cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
422 #else
423         online_policy_cpus = policy->cpus;
424 #endif
425
426         next_perf_state = data->freq_table[next_state].index;
427         if (perf->state == next_perf_state) {
428                 if (unlikely(data->resume)) {
429                         dprintk("Called after resume, resetting to P%d\n",
430                                 next_perf_state);
431                         data->resume = 0;
432                 } else {
433                         dprintk("Already at target state (P%d)\n",
434                                 next_perf_state);
435                         return 0;
436                 }
437         }
438
439         switch (data->cpu_feature) {
440         case SYSTEM_INTEL_MSR_CAPABLE:
441                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
442                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
443                 msr =
444                     (u32) perf->states[next_perf_state].
445                     control & INTEL_MSR_RANGE;
446                 cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr;
447                 break;
448         case SYSTEM_IO_CAPABLE:
449                 cmd.type = SYSTEM_IO_CAPABLE;
450                 cmd.addr.io.port = perf->control_register.address;
451                 cmd.addr.io.bit_width = perf->control_register.bit_width;
452                 cmd.val = (u32) perf->states[next_perf_state].control;
453                 break;
454         default:
455                 return -ENODEV;
456         }
457
458         cpus_clear(cmd.mask);
459
460         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
461                 cmd.mask = online_policy_cpus;
462         else
463                 cpu_set(policy->cpu, cmd.mask);
464
465         freqs.old = data->freq_table[perf->state].frequency;
466         freqs.new = data->freq_table[next_perf_state].frequency;
467         for_each_cpu_mask(i, cmd.mask) {
468                 freqs.cpu = i;
469                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
470         }
471
472         drv_write(&cmd);
473
474         if (acpi_pstate_strict) {
475                 if (!check_freqs(cmd.mask, freqs.new, data)) {
476                         dprintk("acpi_cpufreq_target failed (%d)\n",
477                                 policy->cpu);
478                         return -EAGAIN;
479                 }
480         }
481
482         for_each_cpu_mask(i, cmd.mask) {
483                 freqs.cpu = i;
484                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
485         }
486         perf->state = next_perf_state;
487
488         return result;
489 }
490
491 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
492 {
493         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
494
495         dprintk("acpi_cpufreq_verify\n");
496
497         return cpufreq_frequency_table_verify(policy, data->freq_table);
498 }
499
500 static unsigned long
501 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
502 {
503         struct acpi_processor_performance *perf = data->acpi_data;
504
505         if (cpu_khz) {
506                 /* search the closest match to cpu_khz */
507                 unsigned int i;
508                 unsigned long freq;
509                 unsigned long freqn = perf->states[0].core_frequency * 1000;
510
511                 for (i = 0; i < (perf->state_count - 1); i++) {
512                         freq = freqn;
513                         freqn = perf->states[i + 1].core_frequency * 1000;
514                         if ((2 * cpu_khz) > (freqn + freq)) {
515                                 perf->state = i;
516                                 return freq;
517                         }
518                 }
519                 perf->state = perf->state_count - 1;
520                 return freqn;
521         } else {
522                 /* assume CPU is at P0... */
523                 perf->state = 0;
524                 return perf->states[0].core_frequency * 1000;
525         }
526 }
527
528 /*
529  * acpi_cpufreq_early_init - initialize ACPI P-States library
530  *
531  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
532  * in order to determine correct frequency and voltage pairings. We can
533  * do _PDC and _PSD and find out the processor dependency for the
534  * actual init that will happen later...
535  */
536 static int acpi_cpufreq_early_init(void)
537 {
538         struct acpi_processor_performance *data;
539         cpumask_t covered;
540         unsigned int i, j;
541
542         dprintk("acpi_cpufreq_early_init\n");
543
544         for_each_possible_cpu(i) {
545                 data = kzalloc(sizeof(struct acpi_processor_performance),
546                                GFP_KERNEL);
547                 if (!data) {
548                         for_each_cpu_mask(j, covered) {
549                                 kfree(acpi_perf_data[j]);
550                                 acpi_perf_data[j] = NULL;
551                         }
552                         return -ENOMEM;
553                 }
554                 acpi_perf_data[i] = data;
555                 cpu_set(i, covered);
556         }
557
558         /* Do initialization in ACPI core */
559         acpi_processor_preregister_performance(acpi_perf_data);
560         return 0;
561 }
562
563 /*
564  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
565  * or do it in BIOS firmware and won't inform about it to OS. If not
566  * detected, this has a side effect of making CPU run at a different speed
567  * than OS intended it to run at. Detect it and handle it cleanly.
568  */
569 static int bios_with_sw_any_bug;
570
571 static int sw_any_bug_found(struct dmi_system_id *d)
572 {
573         bios_with_sw_any_bug = 1;
574         return 0;
575 }
576
577 static struct dmi_system_id sw_any_bug_dmi_table[] = {
578         {
579                 .callback = sw_any_bug_found,
580                 .ident = "Supermicro Server X6DLP",
581                 .matches = {
582                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
583                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
584                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
585                 },
586         },
587         { }
588 };
589
590 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
591 {
592         unsigned int i;
593         unsigned int valid_states = 0;
594         unsigned int cpu = policy->cpu;
595         struct acpi_cpufreq_data *data;
596         unsigned int result = 0;
597         struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
598         struct acpi_processor_performance *perf;
599
600         dprintk("acpi_cpufreq_cpu_init\n");
601
602         if (!acpi_perf_data[cpu])
603                 return -ENODEV;
604
605         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
606         if (!data)
607                 return -ENOMEM;
608
609         data->acpi_data = acpi_perf_data[cpu];
610         drv_data[cpu] = data;
611
612         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
613                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
614         }
615
616         result = acpi_processor_register_performance(data->acpi_data, cpu);
617         if (result)
618                 goto err_free;
619
620         perf = data->acpi_data;
621         policy->shared_type = perf->shared_type;
622         /*
623          * Will let policy->cpus know about dependency only when software 
624          * coordination is required.
625          */
626         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
627             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
628                 policy->cpus = perf->shared_cpu_map;
629         }
630
631 #ifdef CONFIG_SMP
632         dmi_check_system(sw_any_bug_dmi_table);
633         if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
634                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
635                 policy->cpus = cpu_core_map[cpu];
636         }
637 #endif
638
639         /* capability check */
640         if (perf->state_count <= 1) {
641                 dprintk("No P-States\n");
642                 result = -ENODEV;
643                 goto err_unreg;
644         }
645
646         if (perf->control_register.space_id != perf->status_register.space_id) {
647                 result = -ENODEV;
648                 goto err_unreg;
649         }
650
651         switch (perf->control_register.space_id) {
652         case ACPI_ADR_SPACE_SYSTEM_IO:
653                 dprintk("SYSTEM IO addr space\n");
654                 data->cpu_feature = SYSTEM_IO_CAPABLE;
655                 break;
656         case ACPI_ADR_SPACE_FIXED_HARDWARE:
657                 dprintk("HARDWARE addr space\n");
658                 if (!check_est_cpu(cpu)) {
659                         result = -ENODEV;
660                         goto err_unreg;
661                 }
662                 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
663                 break;
664         default:
665                 dprintk("Unknown addr space %d\n",
666                         (u32) (perf->control_register.space_id));
667                 result = -ENODEV;
668                 goto err_unreg;
669         }
670
671         data->freq_table =
672             kmalloc(sizeof(struct cpufreq_frequency_table) *
673                     (perf->state_count + 1), GFP_KERNEL);
674         if (!data->freq_table) {
675                 result = -ENOMEM;
676                 goto err_unreg;
677         }
678
679         /* detect transition latency */
680         policy->cpuinfo.transition_latency = 0;
681         for (i = 0; i < perf->state_count; i++) {
682                 if ((perf->states[i].transition_latency * 1000) >
683                     policy->cpuinfo.transition_latency)
684                         policy->cpuinfo.transition_latency =
685                             perf->states[i].transition_latency * 1000;
686         }
687         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
688
689         data->max_freq = perf->states[0].core_frequency * 1000;
690         /* table init */
691         for (i = 0; i < perf->state_count; i++) {
692                 if (i > 0 && perf->states[i].core_frequency ==
693                     perf->states[i - 1].core_frequency)
694                         continue;
695
696                 data->freq_table[valid_states].index = i;
697                 data->freq_table[valid_states].frequency =
698                     perf->states[i].core_frequency * 1000;
699                 valid_states++;
700         }
701         data->freq_table[perf->state_count].frequency = CPUFREQ_TABLE_END;
702
703         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
704         if (result) {
705                 goto err_freqfree;
706         }
707
708         switch (data->cpu_feature) {
709         case ACPI_ADR_SPACE_SYSTEM_IO:
710                 /* Current speed is unknown and not detectable by IO port */
711                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
712                 break;
713         case ACPI_ADR_SPACE_FIXED_HARDWARE:
714                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
715                 get_cur_freq_on_cpu(cpu);
716                 break;
717         default:
718                 break;
719         }
720
721         /* notify BIOS that we exist */
722         acpi_processor_notify_smm(THIS_MODULE);
723
724         /* Check for APERF/MPERF support in hardware */
725         if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
726                 unsigned int ecx;
727                 ecx = cpuid_ecx(6);
728                 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY) {
729                         acpi_cpufreq_driver.getavg = get_measured_perf;
730                 }
731         }
732
733         dprintk("CPU%u - ACPI performance management activated.\n", cpu);
734         for (i = 0; i < perf->state_count; i++)
735                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
736                         (i == perf->state ? '*' : ' '), i,
737                         (u32) perf->states[i].core_frequency,
738                         (u32) perf->states[i].power,
739                         (u32) perf->states[i].transition_latency);
740
741         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
742
743         /*
744          * the first call to ->target() should result in us actually
745          * writing something to the appropriate registers.
746          */
747         data->resume = 1;
748
749         return result;
750
751       err_freqfree:
752         kfree(data->freq_table);
753       err_unreg:
754         acpi_processor_unregister_performance(perf, cpu);
755       err_free:
756         kfree(data);
757         drv_data[cpu] = NULL;
758
759         return result;
760 }
761
762 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
763 {
764         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
765
766         dprintk("acpi_cpufreq_cpu_exit\n");
767
768         if (data) {
769                 cpufreq_frequency_table_put_attr(policy->cpu);
770                 drv_data[policy->cpu] = NULL;
771                 acpi_processor_unregister_performance(data->acpi_data,
772                                                       policy->cpu);
773                 kfree(data);
774         }
775
776         return 0;
777 }
778
779 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
780 {
781         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
782
783         dprintk("acpi_cpufreq_resume\n");
784
785         data->resume = 1;
786
787         return 0;
788 }
789
790 static struct freq_attr *acpi_cpufreq_attr[] = {
791         &cpufreq_freq_attr_scaling_available_freqs,
792         NULL,
793 };
794
795 static struct cpufreq_driver acpi_cpufreq_driver = {
796         .verify = acpi_cpufreq_verify,
797         .target = acpi_cpufreq_target,
798         .init = acpi_cpufreq_cpu_init,
799         .exit = acpi_cpufreq_cpu_exit,
800         .resume = acpi_cpufreq_resume,
801         .name = "acpi-cpufreq",
802         .owner = THIS_MODULE,
803         .attr = acpi_cpufreq_attr,
804 };
805
806 static int __init acpi_cpufreq_init(void)
807 {
808         dprintk("acpi_cpufreq_init\n");
809
810         acpi_cpufreq_early_init();
811
812         return cpufreq_register_driver(&acpi_cpufreq_driver);
813 }
814
815 static void __exit acpi_cpufreq_exit(void)
816 {
817         unsigned int i;
818         dprintk("acpi_cpufreq_exit\n");
819
820         cpufreq_unregister_driver(&acpi_cpufreq_driver);
821
822         for_each_possible_cpu(i) {
823                 kfree(acpi_perf_data[i]);
824                 acpi_perf_data[i] = NULL;
825         }
826         return;
827 }
828
829 module_param(acpi_pstate_strict, uint, 0644);
830 MODULE_PARM_DESC(acpi_pstate_strict,
831                  "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
832
833 late_initcall(acpi_cpufreq_init);
834 module_exit(acpi_cpufreq_exit);
835
836 MODULE_ALIAS("acpi");