]> err.no Git - linux-2.6/blob - arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
[CPUFREQ][6/8] acpi-cpufreq: Eliminate get of current freq on notification
[linux-2.6] / arch / i386 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/sched.h>        /* current */
36 #include <linux/dmi.h>
37
38 #include <linux/acpi.h>
39 #include <acpi/processor.h>
40
41 #include <asm/io.h>
42 #include <asm/msr.h>
43 #include <asm/processor.h>
44 #include <asm/cpufeature.h>
45 #include <asm/delay.h>
46 #include <asm/uaccess.h>
47
48 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
49
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53
54 enum {
55         UNDEFINED_CAPABLE = 0,
56         SYSTEM_INTEL_MSR_CAPABLE,
57         SYSTEM_IO_CAPABLE,
58 };
59
60 #define INTEL_MSR_RANGE         (0xffff)
61
62 struct acpi_cpufreq_data {
63         struct acpi_processor_performance *acpi_data;
64         struct cpufreq_frequency_table *freq_table;
65         unsigned int resume;
66         unsigned int cpu_feature;
67 };
68
69 static struct acpi_cpufreq_data *drv_data[NR_CPUS];
70 static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
71
72 static struct cpufreq_driver acpi_cpufreq_driver;
73
74 static unsigned int acpi_pstate_strict;
75
76 static int check_est_cpu(unsigned int cpuid)
77 {
78         struct cpuinfo_x86 *cpu = &cpu_data[cpuid];
79
80         if (cpu->x86_vendor != X86_VENDOR_INTEL ||
81             !cpu_has(cpu, X86_FEATURE_EST))
82                 return 0;
83
84         return 1;
85 }
86
87 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
88 {
89         struct acpi_processor_performance *perf;
90         int i;
91
92         perf = data->acpi_data;
93
94         for (i = 0; i < perf->state_count; i++) {
95                 if (value == perf->states[i].status)
96                         return data->freq_table[i].frequency;
97         }
98         return 0;
99 }
100
101 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
102 {
103         int i;
104
105         msr &= INTEL_MSR_RANGE;
106         for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
107                 if (msr == data->freq_table[i].index)
108                         return data->freq_table[i].frequency;
109         }
110         return data->freq_table[0].frequency;
111 }
112
113 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
114 {
115         switch (data->cpu_feature) {
116         case SYSTEM_INTEL_MSR_CAPABLE:
117                 return extract_msr(val, data);
118         case SYSTEM_IO_CAPABLE:
119                 return extract_io(val, data);
120         default:
121                 return 0;
122         }
123 }
124
125 static void wrport(u16 port, u8 bit_width, u32 value)
126 {
127         if (bit_width <= 8) {
128                 outb(value, port);
129         } else if (bit_width <= 16) {
130                 outw(value, port);
131         } else if (bit_width <= 32) {
132                 outl(value, port);
133         }
134 }
135
136 static void rdport(u16 port, u8 bit_width, u32 * ret)
137 {
138         *ret = 0;
139         if (bit_width <= 8) {
140                 *ret = inb(port);
141         } else if (bit_width <= 16) {
142                 *ret = inw(port);
143         } else if (bit_width <= 32) {
144                 *ret = inl(port);
145         }
146 }
147
148 struct msr_addr {
149         u32 reg;
150 };
151
152 struct io_addr {
153         u16 port;
154         u8 bit_width;
155 };
156
157 typedef union {
158         struct msr_addr msr;
159         struct io_addr io;
160 } drv_addr_union;
161
162 struct drv_cmd {
163         unsigned int type;
164         cpumask_t mask;
165         drv_addr_union addr;
166         u32 val;
167 };
168
169 static void do_drv_read(struct drv_cmd *cmd)
170 {
171         u32 h;
172
173         switch (cmd->type) {
174         case SYSTEM_INTEL_MSR_CAPABLE:
175                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
176                 break;
177         case SYSTEM_IO_CAPABLE:
178                 rdport(cmd->addr.io.port, cmd->addr.io.bit_width, &cmd->val);
179                 break;
180         default:
181                 break;
182         }
183 }
184
185 static void do_drv_write(struct drv_cmd *cmd)
186 {
187         u32 h = 0;
188
189         switch (cmd->type) {
190         case SYSTEM_INTEL_MSR_CAPABLE:
191                 wrmsr(cmd->addr.msr.reg, cmd->val, h);
192                 break;
193         case SYSTEM_IO_CAPABLE:
194                 wrport(cmd->addr.io.port, cmd->addr.io.bit_width, cmd->val);
195                 break;
196         default:
197                 break;
198         }
199 }
200
201 static inline void drv_read(struct drv_cmd *cmd)
202 {
203         cpumask_t saved_mask = current->cpus_allowed;
204         cmd->val = 0;
205
206         set_cpus_allowed(current, cmd->mask);
207         do_drv_read(cmd);
208         set_cpus_allowed(current, saved_mask);
209
210 }
211
212 static void drv_write(struct drv_cmd *cmd)
213 {
214         cpumask_t saved_mask = current->cpus_allowed;
215         unsigned int i;
216
217         for_each_cpu_mask(i, cmd->mask) {
218                 set_cpus_allowed(current, cpumask_of_cpu(i));
219                 do_drv_write(cmd);
220         }
221
222         set_cpus_allowed(current, saved_mask);
223         return;
224 }
225
226 static u32 get_cur_val(cpumask_t mask)
227 {
228         struct acpi_processor_performance *perf;
229         struct drv_cmd cmd;
230
231         if (unlikely(cpus_empty(mask)))
232                 return 0;
233
234         switch (drv_data[first_cpu(mask)]->cpu_feature) {
235         case SYSTEM_INTEL_MSR_CAPABLE:
236                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
237                 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
238                 break;
239         case SYSTEM_IO_CAPABLE:
240                 cmd.type = SYSTEM_IO_CAPABLE;
241                 perf = drv_data[first_cpu(mask)]->acpi_data;
242                 cmd.addr.io.port = perf->control_register.address;
243                 cmd.addr.io.bit_width = perf->control_register.bit_width;
244                 break;
245         default:
246                 return 0;
247         }
248
249         cmd.mask = mask;
250
251         drv_read(&cmd);
252
253         dprintk("get_cur_val = %u\n", cmd.val);
254
255         return cmd.val;
256 }
257
258 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
259 {
260         struct acpi_cpufreq_data *data = drv_data[cpu];
261         unsigned int freq;
262
263         dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
264
265         if (unlikely(data == NULL ||
266                      data->acpi_data == NULL || data->freq_table == NULL)) {
267                 return 0;
268         }
269
270         freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
271         dprintk("cur freq = %u\n", freq);
272
273         return freq;
274 }
275
276 static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
277                                 struct acpi_cpufreq_data *data)
278 {
279         unsigned int cur_freq;
280         unsigned int i;
281
282         for (i = 0; i < 100; i++) {
283                 cur_freq = extract_freq(get_cur_val(mask), data);
284                 if (cur_freq == freq)
285                         return 1;
286                 udelay(10);
287         }
288         return 0;
289 }
290
291 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
292                                unsigned int target_freq, unsigned int relation)
293 {
294         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
295         struct acpi_processor_performance *perf;
296         struct cpufreq_freqs freqs;
297         cpumask_t online_policy_cpus;
298         struct drv_cmd cmd;
299         unsigned int msr;
300         unsigned int next_state = 0;
301         unsigned int next_perf_state = 0;
302         unsigned int i;
303         int result = 0;
304
305         dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
306
307         if (unlikely(data == NULL ||
308                      data->acpi_data == NULL || data->freq_table == NULL)) {
309                 return -ENODEV;
310         }
311
312         perf = data->acpi_data;
313         result = cpufreq_frequency_table_target(policy,
314                                                 data->freq_table,
315                                                 target_freq,
316                                                 relation, &next_state);
317         if (unlikely(result))
318                 return -ENODEV;
319
320 #ifdef CONFIG_HOTPLUG_CPU
321         /* cpufreq holds the hotplug lock, so we are safe from here on */
322         cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
323 #else
324         online_policy_cpus = policy->cpus;
325 #endif
326
327         next_perf_state = data->freq_table[next_state].index;
328         if (perf->state == next_perf_state) {
329                 if (unlikely(data->resume)) {
330                         dprintk("Called after resume, resetting to P%d\n",
331                                 next_perf_state);
332                         data->resume = 0;
333                 } else {
334                         dprintk("Already at target state (P%d)\n",
335                                 next_perf_state);
336                         return 0;
337                 }
338         }
339
340         switch (data->cpu_feature) {
341         case SYSTEM_INTEL_MSR_CAPABLE:
342                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
343                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
344                 msr =
345                     (u32) perf->states[next_perf_state].
346                     control & INTEL_MSR_RANGE;
347                 cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr;
348                 break;
349         case SYSTEM_IO_CAPABLE:
350                 cmd.type = SYSTEM_IO_CAPABLE;
351                 cmd.addr.io.port = perf->control_register.address;
352                 cmd.addr.io.bit_width = perf->control_register.bit_width;
353                 cmd.val = (u32) perf->states[next_perf_state].control;
354                 break;
355         default:
356                 return -ENODEV;
357         }
358
359         cpus_clear(cmd.mask);
360
361         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
362                 cmd.mask = online_policy_cpus;
363         else
364                 cpu_set(policy->cpu, cmd.mask);
365
366         freqs.old = data->freq_table[perf->state].frequency;
367         freqs.new = data->freq_table[next_perf_state].frequency;
368         for_each_cpu_mask(i, cmd.mask) {
369                 freqs.cpu = i;
370                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
371         }
372
373         drv_write(&cmd);
374
375         if (acpi_pstate_strict) {
376                 if (!check_freqs(cmd.mask, freqs.new, data)) {
377                         dprintk("acpi_cpufreq_target failed (%d)\n",
378                                 policy->cpu);
379                         return -EAGAIN;
380                 }
381         }
382
383         for_each_cpu_mask(i, cmd.mask) {
384                 freqs.cpu = i;
385                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
386         }
387         perf->state = next_perf_state;
388
389         return result;
390 }
391
392 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
393 {
394         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
395
396         dprintk("acpi_cpufreq_verify\n");
397
398         return cpufreq_frequency_table_verify(policy, data->freq_table);
399 }
400
401 static unsigned long
402 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
403 {
404         struct acpi_processor_performance *perf = data->acpi_data;
405
406         if (cpu_khz) {
407                 /* search the closest match to cpu_khz */
408                 unsigned int i;
409                 unsigned long freq;
410                 unsigned long freqn = perf->states[0].core_frequency * 1000;
411
412                 for (i = 0; i < (perf->state_count - 1); i++) {
413                         freq = freqn;
414                         freqn = perf->states[i + 1].core_frequency * 1000;
415                         if ((2 * cpu_khz) > (freqn + freq)) {
416                                 perf->state = i;
417                                 return freq;
418                         }
419                 }
420                 perf->state = perf->state_count - 1;
421                 return freqn;
422         } else {
423                 /* assume CPU is at P0... */
424                 perf->state = 0;
425                 return perf->states[0].core_frequency * 1000;
426         }
427 }
428
429 /*
430  * acpi_cpufreq_early_init - initialize ACPI P-States library
431  *
432  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
433  * in order to determine correct frequency and voltage pairings. We can
434  * do _PDC and _PSD and find out the processor dependency for the
435  * actual init that will happen later...
436  */
437 static int acpi_cpufreq_early_init(void)
438 {
439         struct acpi_processor_performance *data;
440         cpumask_t covered;
441         unsigned int i, j;
442
443         dprintk("acpi_cpufreq_early_init\n");
444
445         for_each_possible_cpu(i) {
446                 data = kzalloc(sizeof(struct acpi_processor_performance),
447                                GFP_KERNEL);
448                 if (!data) {
449                         for_each_cpu_mask(j, covered) {
450                                 kfree(acpi_perf_data[j]);
451                                 acpi_perf_data[j] = NULL;
452                         }
453                         return -ENOMEM;
454                 }
455                 acpi_perf_data[i] = data;
456                 cpu_set(i, covered);
457         }
458
459         /* Do initialization in ACPI core */
460         acpi_processor_preregister_performance(acpi_perf_data);
461         return 0;
462 }
463
464 /*
465  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
466  * or do it in BIOS firmware and won't inform about it to OS. If not
467  * detected, this has a side effect of making CPU run at a different speed
468  * than OS intended it to run at. Detect it and handle it cleanly.
469  */
470 static int bios_with_sw_any_bug;
471
472 static int sw_any_bug_found(struct dmi_system_id *d)
473 {
474         bios_with_sw_any_bug = 1;
475         return 0;
476 }
477
478 static struct dmi_system_id sw_any_bug_dmi_table[] = {
479         {
480                 .callback = sw_any_bug_found,
481                 .ident = "Supermicro Server X6DLP",
482                 .matches = {
483                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
484                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
485                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
486                 },
487         },
488         { }
489 };
490
491 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
492 {
493         unsigned int i;
494         unsigned int valid_states = 0;
495         unsigned int cpu = policy->cpu;
496         struct acpi_cpufreq_data *data;
497         unsigned int l, h;
498         unsigned int result = 0;
499         struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
500         struct acpi_processor_performance *perf;
501
502         dprintk("acpi_cpufreq_cpu_init\n");
503
504         if (!acpi_perf_data[cpu])
505                 return -ENODEV;
506
507         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
508         if (!data)
509                 return -ENOMEM;
510
511         data->acpi_data = acpi_perf_data[cpu];
512         drv_data[cpu] = data;
513
514         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
515                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
516         }
517
518         result = acpi_processor_register_performance(data->acpi_data, cpu);
519         if (result)
520                 goto err_free;
521
522         perf = data->acpi_data;
523         policy->shared_type = perf->shared_type;
524         /*
525          * Will let policy->cpus know about dependency only when software 
526          * coordination is required.
527          */
528         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
529             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
530                 policy->cpus = perf->shared_cpu_map;
531         }
532
533 #ifdef CONFIG_SMP
534         dmi_check_system(sw_any_bug_dmi_table);
535         if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
536                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
537                 policy->cpus = cpu_core_map[cpu];
538         }
539 #endif
540
541         /* capability check */
542         if (perf->state_count <= 1) {
543                 dprintk("No P-States\n");
544                 result = -ENODEV;
545                 goto err_unreg;
546         }
547
548         if (perf->control_register.space_id != perf->status_register.space_id) {
549                 result = -ENODEV;
550                 goto err_unreg;
551         }
552
553         switch (perf->control_register.space_id) {
554         case ACPI_ADR_SPACE_SYSTEM_IO:
555                 dprintk("SYSTEM IO addr space\n");
556                 data->cpu_feature = SYSTEM_IO_CAPABLE;
557                 break;
558         case ACPI_ADR_SPACE_FIXED_HARDWARE:
559                 dprintk("HARDWARE addr space\n");
560                 if (!check_est_cpu(cpu)) {
561                         result = -ENODEV;
562                         goto err_unreg;
563                 }
564                 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
565                 break;
566         default:
567                 dprintk("Unknown addr space %d\n",
568                         (u32) (perf->control_register.space_id));
569                 result = -ENODEV;
570                 goto err_unreg;
571         }
572
573         data->freq_table =
574             kmalloc(sizeof(struct cpufreq_frequency_table) *
575                     (perf->state_count + 1), GFP_KERNEL);
576         if (!data->freq_table) {
577                 result = -ENOMEM;
578                 goto err_unreg;
579         }
580
581         /* detect transition latency */
582         policy->cpuinfo.transition_latency = 0;
583         for (i = 0; i < perf->state_count; i++) {
584                 if ((perf->states[i].transition_latency * 1000) >
585                     policy->cpuinfo.transition_latency)
586                         policy->cpuinfo.transition_latency =
587                             perf->states[i].transition_latency * 1000;
588         }
589         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
590
591         /* table init */
592         for (i = 0; i < perf->state_count; i++) {
593                 if (i > 0 && perf->states[i].core_frequency ==
594                     perf->states[i - 1].core_frequency)
595                         continue;
596
597                 data->freq_table[valid_states].index = i;
598                 data->freq_table[valid_states].frequency =
599                     perf->states[i].core_frequency * 1000;
600                 valid_states++;
601         }
602         data->freq_table[perf->state_count].frequency = CPUFREQ_TABLE_END;
603
604         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
605         if (result) {
606                 goto err_freqfree;
607         }
608
609         switch (data->cpu_feature) {
610         case ACPI_ADR_SPACE_SYSTEM_IO:
611                 /* Current speed is unknown and not detectable by IO port */
612                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
613                 break;
614         case ACPI_ADR_SPACE_FIXED_HARDWARE:
615                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
616                 get_cur_freq_on_cpu(cpu);
617                 break;
618         default:
619                 break;
620         }
621
622         /* notify BIOS that we exist */
623         acpi_processor_notify_smm(THIS_MODULE);
624
625         dprintk("CPU%u - ACPI performance management activated.\n", cpu);
626         for (i = 0; i < perf->state_count; i++)
627                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
628                         (i == perf->state ? '*' : ' '), i,
629                         (u32) perf->states[i].core_frequency,
630                         (u32) perf->states[i].power,
631                         (u32) perf->states[i].transition_latency);
632
633         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
634
635         /*
636          * the first call to ->target() should result in us actually
637          * writing something to the appropriate registers.
638          */
639         data->resume = 1;
640
641         return result;
642
643       err_freqfree:
644         kfree(data->freq_table);
645       err_unreg:
646         acpi_processor_unregister_performance(perf, cpu);
647       err_free:
648         kfree(data);
649         drv_data[cpu] = NULL;
650
651         return result;
652 }
653
654 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
655 {
656         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
657
658         dprintk("acpi_cpufreq_cpu_exit\n");
659
660         if (data) {
661                 cpufreq_frequency_table_put_attr(policy->cpu);
662                 drv_data[policy->cpu] = NULL;
663                 acpi_processor_unregister_performance(data->acpi_data,
664                                                       policy->cpu);
665                 kfree(data);
666         }
667
668         return 0;
669 }
670
671 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
672 {
673         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
674
675         dprintk("acpi_cpufreq_resume\n");
676
677         data->resume = 1;
678
679         return 0;
680 }
681
682 static struct freq_attr *acpi_cpufreq_attr[] = {
683         &cpufreq_freq_attr_scaling_available_freqs,
684         NULL,
685 };
686
687 static struct cpufreq_driver acpi_cpufreq_driver = {
688         .verify = acpi_cpufreq_verify,
689         .target = acpi_cpufreq_target,
690         .init = acpi_cpufreq_cpu_init,
691         .exit = acpi_cpufreq_cpu_exit,
692         .resume = acpi_cpufreq_resume,
693         .name = "acpi-cpufreq",
694         .owner = THIS_MODULE,
695         .attr = acpi_cpufreq_attr,
696 };
697
698 static int __init acpi_cpufreq_init(void)
699 {
700         dprintk("acpi_cpufreq_init\n");
701
702         acpi_cpufreq_early_init();
703
704         return cpufreq_register_driver(&acpi_cpufreq_driver);
705 }
706
707 static void __exit acpi_cpufreq_exit(void)
708 {
709         unsigned int i;
710         dprintk("acpi_cpufreq_exit\n");
711
712         cpufreq_unregister_driver(&acpi_cpufreq_driver);
713
714         for_each_possible_cpu(i) {
715                 kfree(acpi_perf_data[i]);
716                 acpi_perf_data[i] = NULL;
717         }
718         return;
719 }
720
721 module_param(acpi_pstate_strict, uint, 0644);
722 MODULE_PARM_DESC(acpi_pstate_strict,
723                  "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
724
725 late_initcall(acpi_cpufreq_init);
726 module_exit(acpi_cpufreq_exit);
727
728 MODULE_ALIAS("acpi");