]> err.no Git - linux-2.6/blob - arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
[CPUFREQ] Remove duplicate include from acpi-cpufreq
[linux-2.6] / arch / i386 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36
37 #include <linux/acpi.h>
38 #include <acpi/processor.h>
39
40 #include <asm/io.h>
41 #include <asm/msr.h>
42 #include <asm/processor.h>
43 #include <asm/cpufeature.h>
44 #include <asm/delay.h>
45 #include <asm/uaccess.h>
46
47 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
48
49 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51 MODULE_LICENSE("GPL");
52
53 enum {
54         UNDEFINED_CAPABLE = 0,
55         SYSTEM_INTEL_MSR_CAPABLE,
56         SYSTEM_IO_CAPABLE,
57 };
58
59 #define INTEL_MSR_RANGE         (0xffff)
60 #define CPUID_6_ECX_APERFMPERF_CAPABILITY       (0x1)
61
62 struct acpi_cpufreq_data {
63         struct acpi_processor_performance *acpi_data;
64         struct cpufreq_frequency_table *freq_table;
65         unsigned int max_freq;
66         unsigned int resume;
67         unsigned int cpu_feature;
68 };
69
70 static struct acpi_cpufreq_data *drv_data[NR_CPUS];
71 static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
72
73 static struct cpufreq_driver acpi_cpufreq_driver;
74
75 static unsigned int acpi_pstate_strict;
76
77 static int check_est_cpu(unsigned int cpuid)
78 {
79         struct cpuinfo_x86 *cpu = &cpu_data[cpuid];
80
81         if (cpu->x86_vendor != X86_VENDOR_INTEL ||
82             !cpu_has(cpu, X86_FEATURE_EST))
83                 return 0;
84
85         return 1;
86 }
87
88 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
89 {
90         struct acpi_processor_performance *perf;
91         int i;
92
93         perf = data->acpi_data;
94
95         for (i = 0; i < perf->state_count; i++) {
96                 if (value == perf->states[i].status)
97                         return data->freq_table[i].frequency;
98         }
99         return 0;
100 }
101
102 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
103 {
104         int i;
105         struct acpi_processor_performance *perf;
106
107         msr &= INTEL_MSR_RANGE;
108         perf = data->acpi_data;
109
110         for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
111                 if (msr == perf->states[data->freq_table[i].index].status)
112                         return data->freq_table[i].frequency;
113         }
114         return data->freq_table[0].frequency;
115 }
116
117 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
118 {
119         switch (data->cpu_feature) {
120         case SYSTEM_INTEL_MSR_CAPABLE:
121                 return extract_msr(val, data);
122         case SYSTEM_IO_CAPABLE:
123                 return extract_io(val, data);
124         default:
125                 return 0;
126         }
127 }
128
129 static void wrport(u16 port, u8 bit_width, u32 value)
130 {
131         if (bit_width <= 8) {
132                 outb(value, port);
133         } else if (bit_width <= 16) {
134                 outw(value, port);
135         } else if (bit_width <= 32) {
136                 outl(value, port);
137         }
138 }
139
140 static void rdport(u16 port, u8 bit_width, u32 * ret)
141 {
142         *ret = 0;
143         if (bit_width <= 8) {
144                 *ret = inb(port);
145         } else if (bit_width <= 16) {
146                 *ret = inw(port);
147         } else if (bit_width <= 32) {
148                 *ret = inl(port);
149         }
150 }
151
152 struct msr_addr {
153         u32 reg;
154 };
155
156 struct io_addr {
157         u16 port;
158         u8 bit_width;
159 };
160
161 typedef union {
162         struct msr_addr msr;
163         struct io_addr io;
164 } drv_addr_union;
165
166 struct drv_cmd {
167         unsigned int type;
168         cpumask_t mask;
169         drv_addr_union addr;
170         u32 val;
171 };
172
173 static void do_drv_read(struct drv_cmd *cmd)
174 {
175         u32 h;
176
177         switch (cmd->type) {
178         case SYSTEM_INTEL_MSR_CAPABLE:
179                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
180                 break;
181         case SYSTEM_IO_CAPABLE:
182                 rdport(cmd->addr.io.port, cmd->addr.io.bit_width, &cmd->val);
183                 break;
184         default:
185                 break;
186         }
187 }
188
189 static void do_drv_write(struct drv_cmd *cmd)
190 {
191         u32 h = 0;
192
193         switch (cmd->type) {
194         case SYSTEM_INTEL_MSR_CAPABLE:
195                 wrmsr(cmd->addr.msr.reg, cmd->val, h);
196                 break;
197         case SYSTEM_IO_CAPABLE:
198                 wrport(cmd->addr.io.port, cmd->addr.io.bit_width, cmd->val);
199                 break;
200         default:
201                 break;
202         }
203 }
204
205 static inline void drv_read(struct drv_cmd *cmd)
206 {
207         cpumask_t saved_mask = current->cpus_allowed;
208         cmd->val = 0;
209
210         set_cpus_allowed(current, cmd->mask);
211         do_drv_read(cmd);
212         set_cpus_allowed(current, saved_mask);
213
214 }
215
216 static void drv_write(struct drv_cmd *cmd)
217 {
218         cpumask_t saved_mask = current->cpus_allowed;
219         unsigned int i;
220
221         for_each_cpu_mask(i, cmd->mask) {
222                 set_cpus_allowed(current, cpumask_of_cpu(i));
223                 do_drv_write(cmd);
224         }
225
226         set_cpus_allowed(current, saved_mask);
227         return;
228 }
229
230 static u32 get_cur_val(cpumask_t mask)
231 {
232         struct acpi_processor_performance *perf;
233         struct drv_cmd cmd;
234
235         if (unlikely(cpus_empty(mask)))
236                 return 0;
237
238         switch (drv_data[first_cpu(mask)]->cpu_feature) {
239         case SYSTEM_INTEL_MSR_CAPABLE:
240                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
241                 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
242                 break;
243         case SYSTEM_IO_CAPABLE:
244                 cmd.type = SYSTEM_IO_CAPABLE;
245                 perf = drv_data[first_cpu(mask)]->acpi_data;
246                 cmd.addr.io.port = perf->control_register.address;
247                 cmd.addr.io.bit_width = perf->control_register.bit_width;
248                 break;
249         default:
250                 return 0;
251         }
252
253         cmd.mask = mask;
254
255         drv_read(&cmd);
256
257         dprintk("get_cur_val = %u\n", cmd.val);
258
259         return cmd.val;
260 }
261
262 /*
263  * Return the measured active (C0) frequency on this CPU since last call
264  * to this function.
265  * Input: cpu number
266  * Return: Average CPU frequency in terms of max frequency (zero on error)
267  *
268  * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
269  * over a period of time, while CPU is in C0 state.
270  * IA32_MPERF counts at the rate of max advertised frequency
271  * IA32_APERF counts at the rate of actual CPU frequency
272  * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
273  * no meaning should be associated with absolute values of these MSRs.
274  */
275 static unsigned int get_measured_perf(unsigned int cpu)
276 {
277         union {
278                 struct {
279                         u32 lo;
280                         u32 hi;
281                 } split;
282                 u64 whole;
283         } aperf_cur, mperf_cur;
284
285         cpumask_t saved_mask;
286         unsigned int perf_percent;
287         unsigned int retval;
288
289         saved_mask = current->cpus_allowed;
290         set_cpus_allowed(current, cpumask_of_cpu(cpu));
291         if (get_cpu() != cpu) {
292                 /* We were not able to run on requested processor */
293                 put_cpu();
294                 return 0;
295         }
296
297         rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
298         rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
299
300         wrmsr(MSR_IA32_APERF, 0,0);
301         wrmsr(MSR_IA32_MPERF, 0,0);
302
303 #ifdef __i386__
304         /*
305          * We dont want to do 64 bit divide with 32 bit kernel
306          * Get an approximate value. Return failure in case we cannot get
307          * an approximate value.
308          */
309         if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
310                 int shift_count;
311                 u32 h;
312
313                 h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
314                 shift_count = fls(h);
315
316                 aperf_cur.whole >>= shift_count;
317                 mperf_cur.whole >>= shift_count;
318         }
319
320         if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
321                 int shift_count = 7;
322                 aperf_cur.split.lo >>= shift_count;
323                 mperf_cur.split.lo >>= shift_count;
324         }
325
326         if (aperf_cur.split.lo && mperf_cur.split.lo) {
327                 perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
328         } else {
329                 perf_percent = 0;
330         }
331
332 #else
333         if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
334                 int shift_count = 7;
335                 aperf_cur.whole >>= shift_count;
336                 mperf_cur.whole >>= shift_count;
337         }
338
339         if (aperf_cur.whole && mperf_cur.whole) {
340                 perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
341         } else {
342                 perf_percent = 0;
343         }
344
345 #endif
346
347         retval = drv_data[cpu]->max_freq * perf_percent / 100;
348
349         put_cpu();
350         set_cpus_allowed(current, saved_mask);
351
352         dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
353         return retval;
354 }
355
356 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
357 {
358         struct acpi_cpufreq_data *data = drv_data[cpu];
359         unsigned int freq;
360
361         dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
362
363         if (unlikely(data == NULL ||
364                      data->acpi_data == NULL || data->freq_table == NULL)) {
365                 return 0;
366         }
367
368         freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
369         dprintk("cur freq = %u\n", freq);
370
371         return freq;
372 }
373
374 static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
375                                 struct acpi_cpufreq_data *data)
376 {
377         unsigned int cur_freq;
378         unsigned int i;
379
380         for (i = 0; i < 100; i++) {
381                 cur_freq = extract_freq(get_cur_val(mask), data);
382                 if (cur_freq == freq)
383                         return 1;
384                 udelay(10);
385         }
386         return 0;
387 }
388
389 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
390                                unsigned int target_freq, unsigned int relation)
391 {
392         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
393         struct acpi_processor_performance *perf;
394         struct cpufreq_freqs freqs;
395         cpumask_t online_policy_cpus;
396         struct drv_cmd cmd;
397         unsigned int msr;
398         unsigned int next_state = 0;
399         unsigned int next_perf_state = 0;
400         unsigned int i;
401         int result = 0;
402
403         dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
404
405         if (unlikely(data == NULL ||
406                      data->acpi_data == NULL || data->freq_table == NULL)) {
407                 return -ENODEV;
408         }
409
410         perf = data->acpi_data;
411         result = cpufreq_frequency_table_target(policy,
412                                                 data->freq_table,
413                                                 target_freq,
414                                                 relation, &next_state);
415         if (unlikely(result))
416                 return -ENODEV;
417
418 #ifdef CONFIG_HOTPLUG_CPU
419         /* cpufreq holds the hotplug lock, so we are safe from here on */
420         cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
421 #else
422         online_policy_cpus = policy->cpus;
423 #endif
424
425         next_perf_state = data->freq_table[next_state].index;
426         if (perf->state == next_perf_state) {
427                 if (unlikely(data->resume)) {
428                         dprintk("Called after resume, resetting to P%d\n",
429                                 next_perf_state);
430                         data->resume = 0;
431                 } else {
432                         dprintk("Already at target state (P%d)\n",
433                                 next_perf_state);
434                         return 0;
435                 }
436         }
437
438         switch (data->cpu_feature) {
439         case SYSTEM_INTEL_MSR_CAPABLE:
440                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
441                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
442                 msr =
443                     (u32) perf->states[next_perf_state].
444                     control & INTEL_MSR_RANGE;
445                 cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr;
446                 break;
447         case SYSTEM_IO_CAPABLE:
448                 cmd.type = SYSTEM_IO_CAPABLE;
449                 cmd.addr.io.port = perf->control_register.address;
450                 cmd.addr.io.bit_width = perf->control_register.bit_width;
451                 cmd.val = (u32) perf->states[next_perf_state].control;
452                 break;
453         default:
454                 return -ENODEV;
455         }
456
457         cpus_clear(cmd.mask);
458
459         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
460                 cmd.mask = online_policy_cpus;
461         else
462                 cpu_set(policy->cpu, cmd.mask);
463
464         freqs.old = data->freq_table[perf->state].frequency;
465         freqs.new = data->freq_table[next_perf_state].frequency;
466         for_each_cpu_mask(i, cmd.mask) {
467                 freqs.cpu = i;
468                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
469         }
470
471         drv_write(&cmd);
472
473         if (acpi_pstate_strict) {
474                 if (!check_freqs(cmd.mask, freqs.new, data)) {
475                         dprintk("acpi_cpufreq_target failed (%d)\n",
476                                 policy->cpu);
477                         return -EAGAIN;
478                 }
479         }
480
481         for_each_cpu_mask(i, cmd.mask) {
482                 freqs.cpu = i;
483                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
484         }
485         perf->state = next_perf_state;
486
487         return result;
488 }
489
490 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
491 {
492         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
493
494         dprintk("acpi_cpufreq_verify\n");
495
496         return cpufreq_frequency_table_verify(policy, data->freq_table);
497 }
498
499 static unsigned long
500 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
501 {
502         struct acpi_processor_performance *perf = data->acpi_data;
503
504         if (cpu_khz) {
505                 /* search the closest match to cpu_khz */
506                 unsigned int i;
507                 unsigned long freq;
508                 unsigned long freqn = perf->states[0].core_frequency * 1000;
509
510                 for (i = 0; i < (perf->state_count - 1); i++) {
511                         freq = freqn;
512                         freqn = perf->states[i + 1].core_frequency * 1000;
513                         if ((2 * cpu_khz) > (freqn + freq)) {
514                                 perf->state = i;
515                                 return freq;
516                         }
517                 }
518                 perf->state = perf->state_count - 1;
519                 return freqn;
520         } else {
521                 /* assume CPU is at P0... */
522                 perf->state = 0;
523                 return perf->states[0].core_frequency * 1000;
524         }
525 }
526
527 /*
528  * acpi_cpufreq_early_init - initialize ACPI P-States library
529  *
530  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
531  * in order to determine correct frequency and voltage pairings. We can
532  * do _PDC and _PSD and find out the processor dependency for the
533  * actual init that will happen later...
534  */
535 static int acpi_cpufreq_early_init(void)
536 {
537         struct acpi_processor_performance *data;
538         cpumask_t covered;
539         unsigned int i, j;
540
541         dprintk("acpi_cpufreq_early_init\n");
542
543         for_each_possible_cpu(i) {
544                 data = kzalloc(sizeof(struct acpi_processor_performance),
545                                GFP_KERNEL);
546                 if (!data) {
547                         for_each_cpu_mask(j, covered) {
548                                 kfree(acpi_perf_data[j]);
549                                 acpi_perf_data[j] = NULL;
550                         }
551                         return -ENOMEM;
552                 }
553                 acpi_perf_data[i] = data;
554                 cpu_set(i, covered);
555         }
556
557         /* Do initialization in ACPI core */
558         acpi_processor_preregister_performance(acpi_perf_data);
559         return 0;
560 }
561
562 /*
563  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
564  * or do it in BIOS firmware and won't inform about it to OS. If not
565  * detected, this has a side effect of making CPU run at a different speed
566  * than OS intended it to run at. Detect it and handle it cleanly.
567  */
568 static int bios_with_sw_any_bug;
569
570 static int sw_any_bug_found(struct dmi_system_id *d)
571 {
572         bios_with_sw_any_bug = 1;
573         return 0;
574 }
575
576 static struct dmi_system_id sw_any_bug_dmi_table[] = {
577         {
578                 .callback = sw_any_bug_found,
579                 .ident = "Supermicro Server X6DLP",
580                 .matches = {
581                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
582                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
583                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
584                 },
585         },
586         { }
587 };
588
589 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
590 {
591         unsigned int i;
592         unsigned int valid_states = 0;
593         unsigned int cpu = policy->cpu;
594         struct acpi_cpufreq_data *data;
595         unsigned int result = 0;
596         struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
597         struct acpi_processor_performance *perf;
598
599         dprintk("acpi_cpufreq_cpu_init\n");
600
601         if (!acpi_perf_data[cpu])
602                 return -ENODEV;
603
604         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
605         if (!data)
606                 return -ENOMEM;
607
608         data->acpi_data = acpi_perf_data[cpu];
609         drv_data[cpu] = data;
610
611         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
612                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
613         }
614
615         result = acpi_processor_register_performance(data->acpi_data, cpu);
616         if (result)
617                 goto err_free;
618
619         perf = data->acpi_data;
620         policy->shared_type = perf->shared_type;
621         /*
622          * Will let policy->cpus know about dependency only when software 
623          * coordination is required.
624          */
625         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
626             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
627                 policy->cpus = perf->shared_cpu_map;
628         }
629
630 #ifdef CONFIG_SMP
631         dmi_check_system(sw_any_bug_dmi_table);
632         if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
633                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
634                 policy->cpus = cpu_core_map[cpu];
635         }
636 #endif
637
638         /* capability check */
639         if (perf->state_count <= 1) {
640                 dprintk("No P-States\n");
641                 result = -ENODEV;
642                 goto err_unreg;
643         }
644
645         if (perf->control_register.space_id != perf->status_register.space_id) {
646                 result = -ENODEV;
647                 goto err_unreg;
648         }
649
650         switch (perf->control_register.space_id) {
651         case ACPI_ADR_SPACE_SYSTEM_IO:
652                 dprintk("SYSTEM IO addr space\n");
653                 data->cpu_feature = SYSTEM_IO_CAPABLE;
654                 break;
655         case ACPI_ADR_SPACE_FIXED_HARDWARE:
656                 dprintk("HARDWARE addr space\n");
657                 if (!check_est_cpu(cpu)) {
658                         result = -ENODEV;
659                         goto err_unreg;
660                 }
661                 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
662                 break;
663         default:
664                 dprintk("Unknown addr space %d\n",
665                         (u32) (perf->control_register.space_id));
666                 result = -ENODEV;
667                 goto err_unreg;
668         }
669
670         data->freq_table =
671             kmalloc(sizeof(struct cpufreq_frequency_table) *
672                     (perf->state_count + 1), GFP_KERNEL);
673         if (!data->freq_table) {
674                 result = -ENOMEM;
675                 goto err_unreg;
676         }
677
678         /* detect transition latency */
679         policy->cpuinfo.transition_latency = 0;
680         for (i = 0; i < perf->state_count; i++) {
681                 if ((perf->states[i].transition_latency * 1000) >
682                     policy->cpuinfo.transition_latency)
683                         policy->cpuinfo.transition_latency =
684                             perf->states[i].transition_latency * 1000;
685         }
686         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
687
688         data->max_freq = perf->states[0].core_frequency * 1000;
689         /* table init */
690         for (i = 0; i < perf->state_count; i++) {
691                 if (i > 0 && perf->states[i].core_frequency ==
692                     perf->states[i - 1].core_frequency)
693                         continue;
694
695                 data->freq_table[valid_states].index = i;
696                 data->freq_table[valid_states].frequency =
697                     perf->states[i].core_frequency * 1000;
698                 valid_states++;
699         }
700         data->freq_table[perf->state_count].frequency = CPUFREQ_TABLE_END;
701
702         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
703         if (result) {
704                 goto err_freqfree;
705         }
706
707         switch (data->cpu_feature) {
708         case ACPI_ADR_SPACE_SYSTEM_IO:
709                 /* Current speed is unknown and not detectable by IO port */
710                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
711                 break;
712         case ACPI_ADR_SPACE_FIXED_HARDWARE:
713                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
714                 get_cur_freq_on_cpu(cpu);
715                 break;
716         default:
717                 break;
718         }
719
720         /* notify BIOS that we exist */
721         acpi_processor_notify_smm(THIS_MODULE);
722
723         /* Check for APERF/MPERF support in hardware */
724         if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
725                 unsigned int ecx;
726                 ecx = cpuid_ecx(6);
727                 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY) {
728                         acpi_cpufreq_driver.getavg = get_measured_perf;
729                 }
730         }
731
732         dprintk("CPU%u - ACPI performance management activated.\n", cpu);
733         for (i = 0; i < perf->state_count; i++)
734                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
735                         (i == perf->state ? '*' : ' '), i,
736                         (u32) perf->states[i].core_frequency,
737                         (u32) perf->states[i].power,
738                         (u32) perf->states[i].transition_latency);
739
740         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
741
742         /*
743          * the first call to ->target() should result in us actually
744          * writing something to the appropriate registers.
745          */
746         data->resume = 1;
747
748         return result;
749
750       err_freqfree:
751         kfree(data->freq_table);
752       err_unreg:
753         acpi_processor_unregister_performance(perf, cpu);
754       err_free:
755         kfree(data);
756         drv_data[cpu] = NULL;
757
758         return result;
759 }
760
761 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
762 {
763         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
764
765         dprintk("acpi_cpufreq_cpu_exit\n");
766
767         if (data) {
768                 cpufreq_frequency_table_put_attr(policy->cpu);
769                 drv_data[policy->cpu] = NULL;
770                 acpi_processor_unregister_performance(data->acpi_data,
771                                                       policy->cpu);
772                 kfree(data);
773         }
774
775         return 0;
776 }
777
778 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
779 {
780         struct acpi_cpufreq_data *data = drv_data[policy->cpu];
781
782         dprintk("acpi_cpufreq_resume\n");
783
784         data->resume = 1;
785
786         return 0;
787 }
788
789 static struct freq_attr *acpi_cpufreq_attr[] = {
790         &cpufreq_freq_attr_scaling_available_freqs,
791         NULL,
792 };
793
794 static struct cpufreq_driver acpi_cpufreq_driver = {
795         .verify = acpi_cpufreq_verify,
796         .target = acpi_cpufreq_target,
797         .init = acpi_cpufreq_cpu_init,
798         .exit = acpi_cpufreq_cpu_exit,
799         .resume = acpi_cpufreq_resume,
800         .name = "acpi-cpufreq",
801         .owner = THIS_MODULE,
802         .attr = acpi_cpufreq_attr,
803 };
804
805 static int __init acpi_cpufreq_init(void)
806 {
807         dprintk("acpi_cpufreq_init\n");
808
809         acpi_cpufreq_early_init();
810
811         return cpufreq_register_driver(&acpi_cpufreq_driver);
812 }
813
814 static void __exit acpi_cpufreq_exit(void)
815 {
816         unsigned int i;
817         dprintk("acpi_cpufreq_exit\n");
818
819         cpufreq_unregister_driver(&acpi_cpufreq_driver);
820
821         for_each_possible_cpu(i) {
822                 kfree(acpi_perf_data[i]);
823                 acpi_perf_data[i] = NULL;
824         }
825         return;
826 }
827
828 module_param(acpi_pstate_strict, uint, 0644);
829 MODULE_PARM_DESC(acpi_pstate_strict,
830                  "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
831
832 late_initcall(acpi_cpufreq_init);
833 module_exit(acpi_cpufreq_exit);
834
835 MODULE_ALIAS("acpi");